Colle e

Sample Covariance Matrices of Multiple Time Series

_ _

• Covariance matrix of stationary stochastic process x_t = (x^a_t), $t\in\mathbb{Z},\ 1\leq a\leq p$:

$$C_{ij}^{ab} = \frac{1}{M} \prod_{t=1}^{M} x_{i+t}^{a} x_{j+t}^{b} = \frac{1}{M} (X X^{T})_{ij}^{ab}$$

Here $X = (x_{it})$ is pN × M matrix with entries $x_{it} = x$

Compare with Wishart–Laguerre Ensemble

 Empirical covariances for N data, evaluated on the basis of M measurements for each variable. Use N × M matrices X = (x_{it}) with i.i.d. entries x_{it} to compute:

$$C_{ij} = \frac{1}{M} (X X^{T})_{ij} = \frac{1}{M} \prod_{t=1}^{M} x_{it} x_{jt}$$

Expect finite sample fluctuation around mean.

$$C_{ij} = \langle x_i x_j \rangle \pm \mathcal{O}(1/\sqrt{M}) = _{ij} \pm \mathcal{O}(1/\sqrt{M})$$

• Spectrum of C as $N \to \infty$, $M \to \infty$ @ fixed = N/M? \Rightarrow Marčenko Pastur-Law

$$() = \frac{1}{2} \int \frac{1}{4} - (-(1 +))^2$$

Performing the Average

• Standard Approach – Replica Method

$$\left< \ln Z_{N_p} \right> = \lim_{n \to 0} \frac{1}{n} \ln \left< Z_{N_p}^n \right>$$

- For integer n, $Z_{N_p}^n$ is partition function of n identical copies of the system (n-th power of Gaussian integral)
- Experience: final result has structure of replica-symmetric high-temperature solution annealed calculation (n

Performing the Average (contd.)

- Insert definition of C, and p = p,
 - \langle

Numerical Tests

• Spectral density for $x_n \sim \mathcal{N}(0, 1)$ i.i.d. @ = 0.1

AR-1 Process @ = 0.1, p = 1 $x_n = a_1 x_{n-1} + \frac{1}{1 - a_1^2} n$

• (Logarithmic) Spectral density for AR-1 process @ = 0.1

AR-1 Process @ = 0.1, p = 2 and p = 3

• (Logarithmic) Spectral density for AR-1 process @ = 0.1

 $x_n = A x_{n-1} +$

Summary

- Computed DOS of sample covariance matrices for multiple time-series using annealed calculation.
- Key ingredient: Szegö's theorem for (block) Toeplitz matrices
- Rectangular window and decorrelation approximation ⇒ Closed form approximation.
- Use of Szegös theorem suggests a scaling form for DOS.
 - scaling is requires knowledge of a function on \mathbb{R}^{p} ! DOS for i.i.d. data is insu cient.
 - currently working on e ective methods to evaluate scaling function for p > 1.
- Lots of possible applications.