Colle e

Sample Covariance Matrices of Multiple Time Series

• Covariance matrix of stationary stochastic process $x_t = (x_t^a)$ $\mathbf{t} \in \mathbb{Z}$, $\mathbf{1} \leq \mathbf{a} \leq \mathbf{p}$

$$
C_{ij}^{ab} = \frac{1}{M} \sum_{t=1}^{M} x_{i+t}^{a} x_{j+t}^{b} = \frac{1}{M} (XX^{T})_{ij}^{ab}.
$$

Here $X = (x_{it})$ is pN \times M matrix with entries $x_{it} = x$

Compare with Wishart–Laguerre Ensemble

• Empirical covariances for N data, evaluated on the basis of M measurements for each variable. Use $N \times M$ matrices $X = (x_{it})$ with i.i.d. entries x_{it} to compute:

$$
C_{ij} = \frac{1}{M} (XX^{T})_{ij} = \frac{1}{M} \sum_{t=1}^{M} x_{it} x_{jt}.
$$

Expect finite sample fluctuation around mean.

$$
C_{ij} = \langle x_i x_j \rangle \pm \mathcal{O}(1/\sqrt{M}) = i_j \pm \mathcal{O}(1/\sqrt{M})
$$

• Spectrum of C as $N \to \infty$, M $\to \infty$ @ fixed = N/M? ⇒ Marčenko Pastur-Law

$$
() = \frac{1}{2} \left[\frac{1}{4} - (- (1 + 2))^{2} \right]
$$

Performing the Average

• Standard Approach – Replica Method

$$
\left\langle \ln Z_{N_p} \right\rangle = \lim_{n \to 0} \frac{1}{n} \ln \left\langle Z_{N_p}^n \right\rangle
$$

- For integer n, Zn $N_{\sf p}^{\sf n}$ is partition function of n identical copies of the system (ⁿ-th power of Gaussian integral)
- Experience: final result has structure of replica-symmetri c high-temperature solution [⇔] annealed calculation (n

Performing the Average (contd.)

- Insert definition of C, and $p = p$,
	-

Numerical Tests

• Spectral density for $x_n \sim \mathcal{N}(0, 1)$ i.i.d. $\omega = 0.1$

AR-1 Process \textcircled{e} = 0.1, $p = 1$ $x_n = a_1 x_{n-1} + \frac{1}{1 - a_1^2}$ n

• (Logarithmic) Spectral density for AR-1 process $@ = 0.1$

AR-1 Process Θ = 0.1, $p = 2$ and $p = 3$

• (Logarithmic) Spectral density for AR-1 process $@ = 0.1$

 $x_n = A x_{n-1} +$

Summary

- Computed DOS of sample covariance matrices for multiple time-series using annealed calculation.
- Key ingredient: Szegö's theorem for (block) Toeplitz matrices
- Rectangular window and decorrelation approximation ⇒ Closed form approximation.
- Use of Szegös theorem suggests a scaling form for DOS.
	- $-$ scaling is requires knowledge of a function on \mathbb{R}^p ! DOS for i.i.d. data is insu cient.
	- $-$ currently working on e ective methods to evaluate scaling function for $p > 1$.
- Lots of possible applications.