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Plan of Talk

• Motivation - statistics and string theory
• Coulomb gas formulation for Gaussian 

ensembles
• Solution of problem by hard wall 

constraint- half Hilbert transfrom
• Some numerical tests



Conditioned matrix ensembles

M -random matrix e.g. from GOE, GUE or GSE ensemble 

Say M describes Hamiltonian of vibrations about some 
stationary point in the energy landscape or the stability 
matrix of a fixed point in a dynamical system. Symmetry 
and complexity determine Gaussian statistics but in an
experiment we can only observe systems where all
eigenvalues are > z 

(i) What is the probability of finding such a matrix ?
(ii) What are its spectral properties ?



Anthropic principles 
The current form of string theory is believed to have
10500 possible vacua -the Landscape-each 
corresponding to a possible Universe and physical 
constants.

It seems unlikely that life can evolve in a generic universe 
so we are lucky to be here - anthropic principle this is the 
only type of Universe we could prossibly see, there could 
be lots of others (statistically dominating) which are quite 
different to ours.

What properties of our universe depend of the details of
string theory and which depend simply on the statistics of
the complex/random landscape ?



Anthropic Reasoning
Fred Hoyle- a 12C based life form reasoned
there should be a mechanism that permits 
sufficient 12C for life to exist,he then found
the 4He+8Be resonnance of 12C that 

is responsible

Stephen Weinberg: the cosmological
constant is small but if one takes the
maximal value avoiding a « Big Rip »
this gives a surprisngly good estimate



Estimating the probability of
a stable universe



QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.



Coulomb Gas Formulation
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Hard Wall Constraint

PN



Density functional method
f (μ) =

1
N

δ(μ − μi
i=1
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∑ )

H[ f ] = −N 2Σ[ f ]

Σ[ f ] = −
1
2

f (μ)μ2∫ dμ +
1
2

f (μ) f (μ') ln(| μ − μ' |)dμdμ'∫
f (μ) = 0 for μ < z ; f (μ)dμ =1∫

Normalised density field

Superextensive energy scaling 

Constraints on f:

ZN (z) = d[ f ]J[ f ]exp(N 2βΣ[ f ])∫
Jacobian to pass from coordinates
To density field



Functional Integral
J[ f ] = CN dμi

i
∏∫ δ(Nf (μ) − δ(μ − μi

i
∑ ))

= CN d[g]∫ exp(N f (μ)g(μ)∫ + N ln exp(−g(μ))dμ∫( ))
Jacobian term is exp(O(N)) and is thus negligible with respect
to the energy term exp(O(N2)).

Formally J[ f ]= CN
'' exp −N dμ f (μ)ln( f (μ))∫( )

If large N saddle-point can be justified above - mean 
field like entropy term (slightly more to it than that).



Leading order behaviour
ZN (z) = DN exp(N 2βS(z) + O(N))

S[z] = max f {Σ[ f ]}

μ = P dμ' f (μ)
μ − μ'z

∞

∫
μ = z + x ⇒ z + x = (H+ f )(x)

H+F = P dx ' F(x')
x − x '0

∞

∫

Saddle point equation,
gives thermodynamically 





Recovering Wigner’s Semi-
Circle Law 

However f must be real and positive, but f(0)<0 if L(z) < −2z

⇒ z < − 2

f (f (μ) =
1
π

2 − μ2

Wigner semi-circle law when
z=-√2- but this solution is Ok
for all z<-√2 as it respects the
boundary conditions

Setting the boundary to the left of z=-√2 does not affect
the Coulomb gas - the wall does not touch the Wigner
semi-cirlcle

⇒ S(z) = S(− 2) = S(−∞) for z < − 2



Modified density function 

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

z=-1
z=0

z=1/2

Effect of moving the barrier position z on the eigenvalue
density distribution



Comparsion with Numerics

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Analytic formula for
f for z=0 compared
to that found by
numerical diagonalizing
of 6x6 matrices



Computing S(z)
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Form of S(z)
QuickTime™ and a

TIFF (Uncompressed) decompressor
are needed to see this picture.

PN (λmin > ζ ) = PN (μmin > z) =
ZN (z)

ZN (−∞)
; z



Matching with Tracy Widom
For

P(λmin > t) ≈ exp(−N 2βθ( t
N

+ 2



The persistence problem
Probability that all eigenvalues are positive ≈ exp(−N 2βθ(0))

θ(0) =
ln(3)

4
≈ 0.274653..

Note that 0.25 < 0.274653..< 0.3291

Aazami Easther
aproximation

Exact result Aazami Easther
numerics



Numerical test of 
persistence

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

ln(PN)
−0.272N 2 − 0.493N + 0.244



Direct enumeraton
Can generate the ensembles and do the diagonalization
efficiently but for large N you never see matrices with
all eigenvalues positive

Trick of limited usefulness: if M is a positve matrix then:

(v,Mv) > 0 ∀v ⇒ (ei,Mei) = Mii > 0

P(λmin > 0) =
m+

m





Conclusions
Coulomb gas formulation of eigenvalues of GOE
GUE and GSE eigenvalues allows one to extract
probability distribution of smallest eigenvalue far
away from its typical value but within the sea
See a modified density of states in the condtioned
ensemble quite rich behaviour
Is it possible to calculate the O(N) term and other
lower order terms ?
Analysis of non symmetric matrix ensembles, 
Lyapounov exponents of dynamical fixed points
of complex systems.
Are there more efficient ways of doing numerics ?

Can try to look at index distribution of random matrices
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