

Non-intersecting random paths

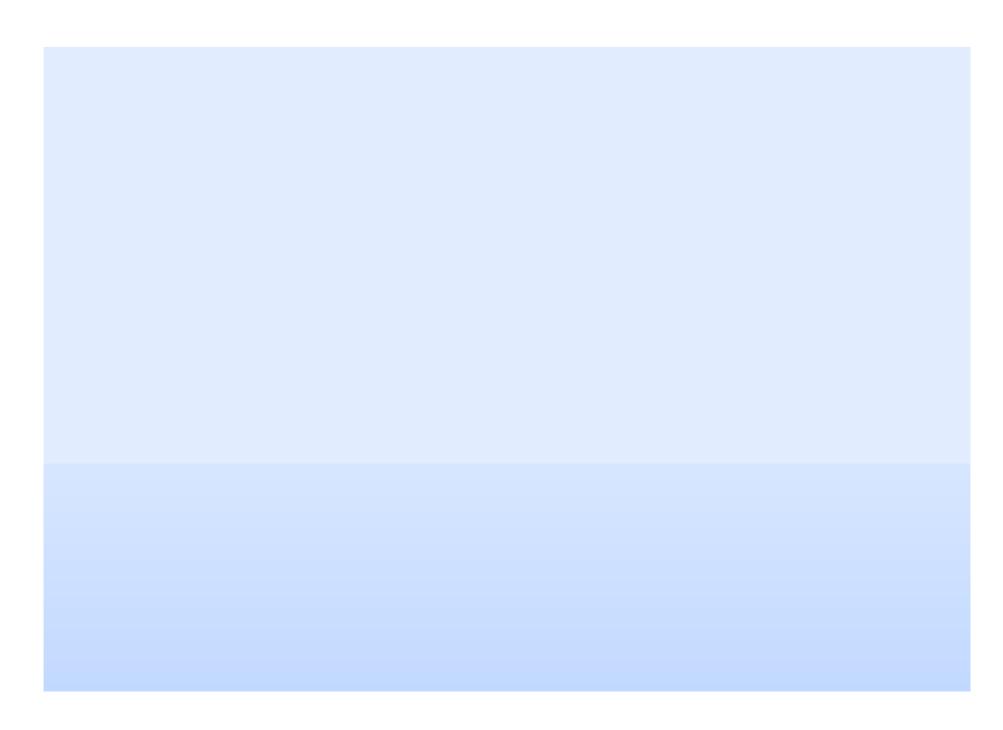
- ▲ Given a 1-D diffusion process with transition probability density y. Suppose independent copies 1 conditioned to
 - **A** start at time at given points $1 2 \cdots$
 - **A** end at time at given points $1 mtextsf{2} hextsf{0} hextsf{0}$
 - not intersect in the full time interval
- Then the positions of the paths at given time are a determinantal point process. consequence of Karlin-McGregor (1959) theorem
- **A** The correlation kernel takes the form

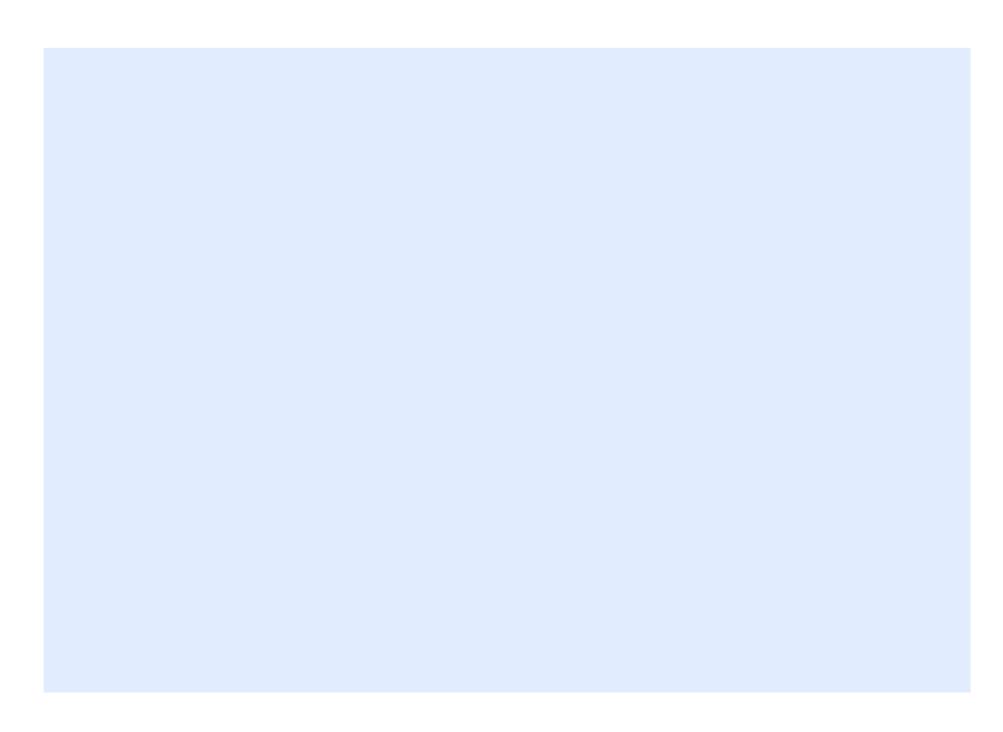
$$y \qquad \sum_{j=1} \qquad y$$

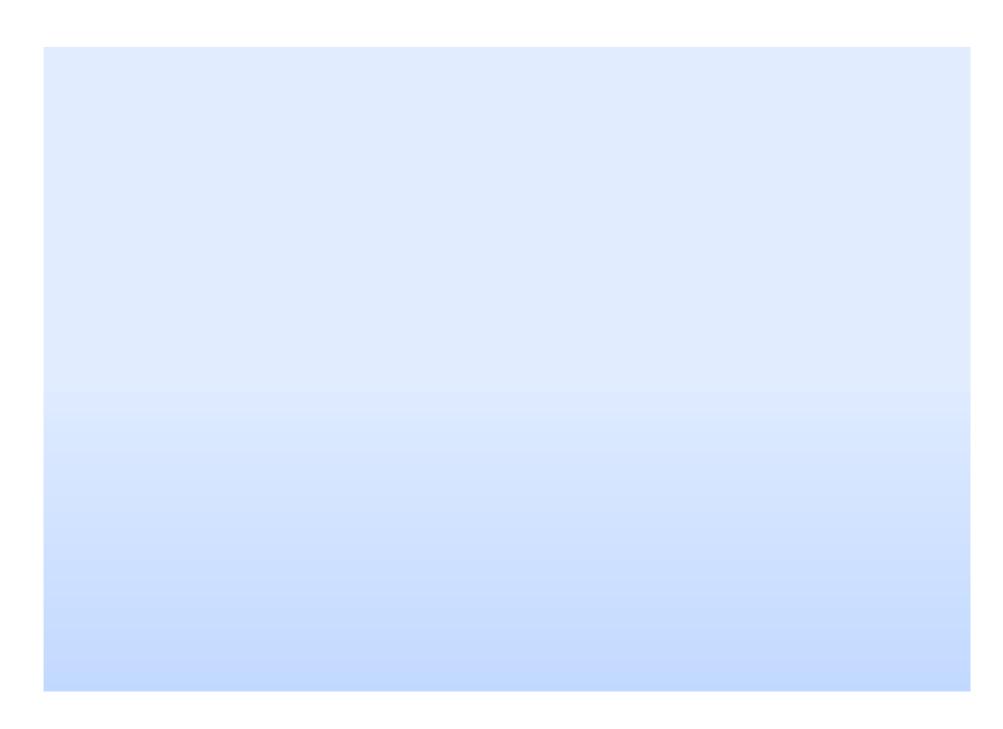
,

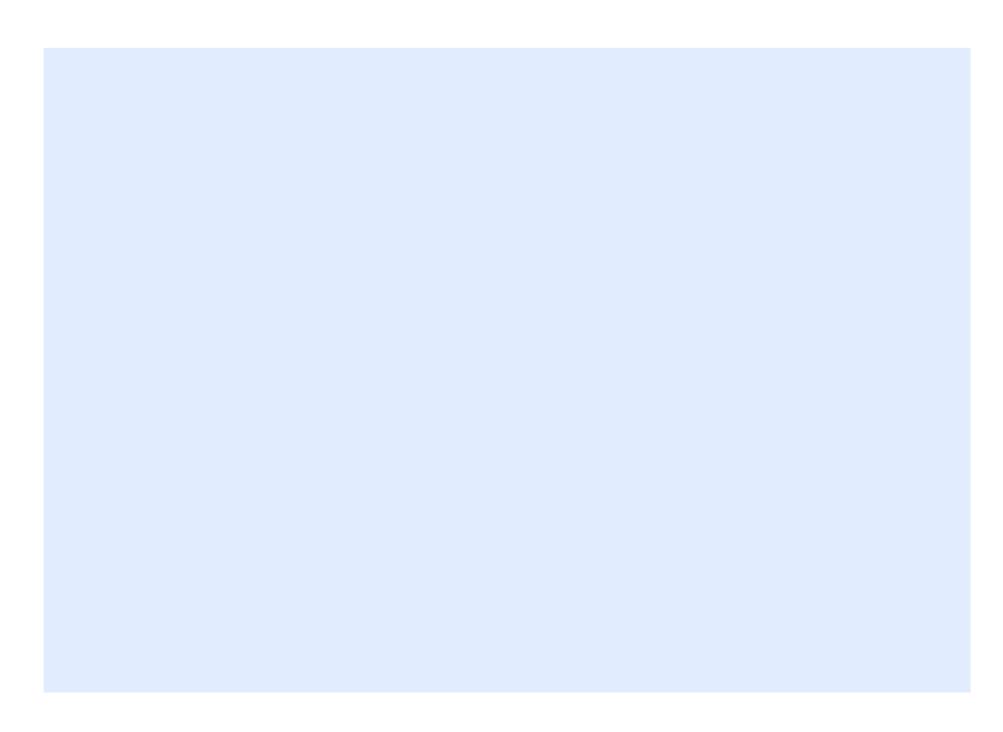
,

where biorthogonal functions









Correlation kernel

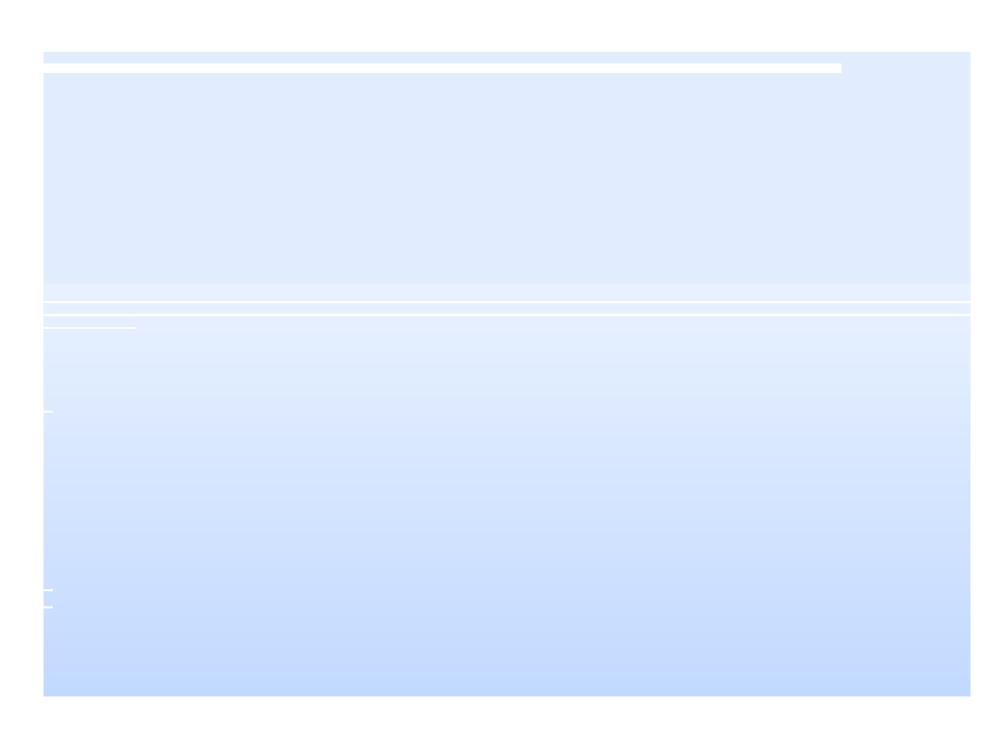
The correlation kernel for non-intersecting Brownian paths with two endpoints can be expressed in terms of the solution of the RH problem

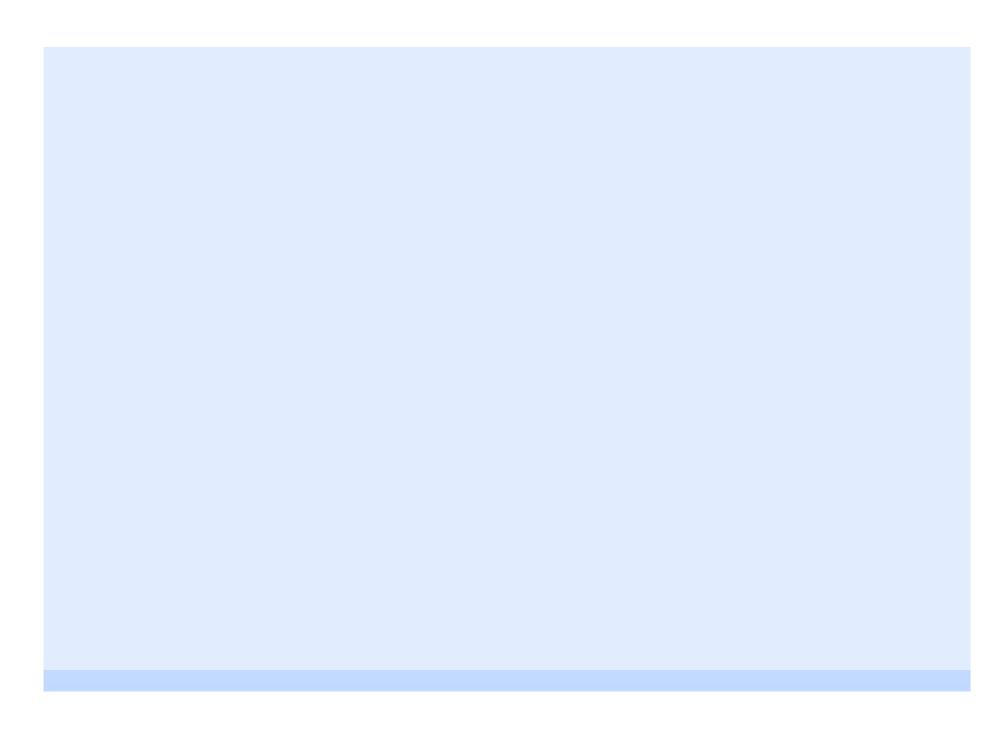
$$y = \frac{y}{-y} \begin{pmatrix} 1 & y & 2 & y \end{pmatrix} + y^{-1} + \begin{pmatrix} y \\ y \end{pmatrix}$$
weights $1 = e^{-(y-1)} + 2 = e^{-(y$

with weights1 \mathcal{C}^{-} () \mathcal{C}^{-} ()) wheredepends onfor two weights: Bleher-Kuijlaars (2004)

extension to more than two weights: Daems-Kuijlaars (2004)

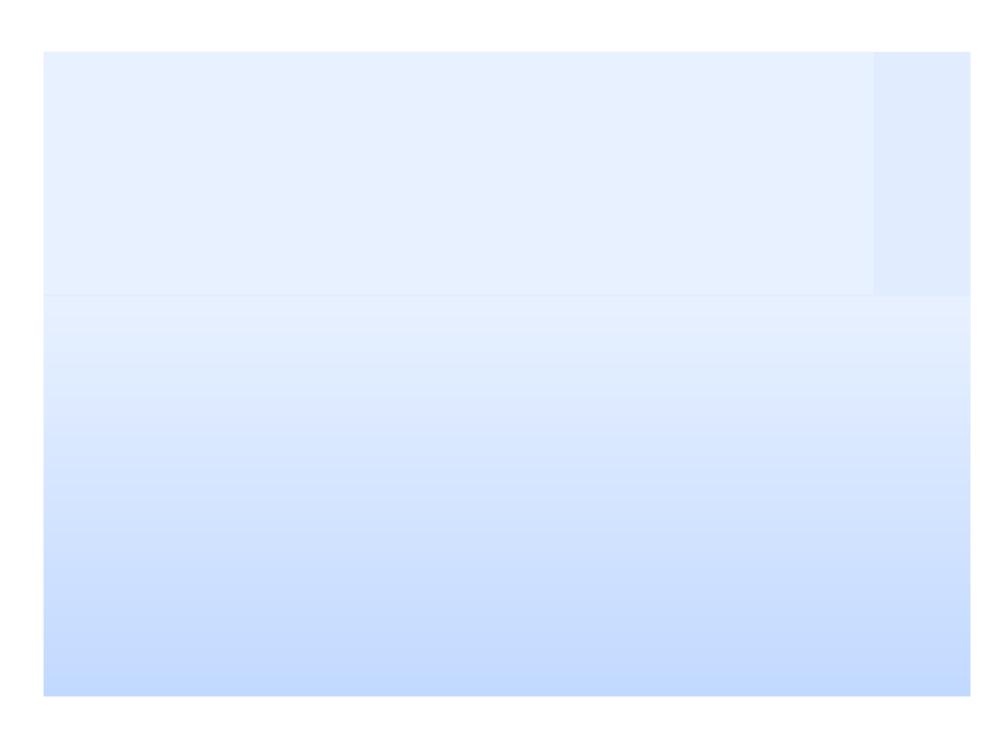
The RH problem is then analyzed with the steepest descent method for RH problems of Deift and Zhou.





PROPOSITION:

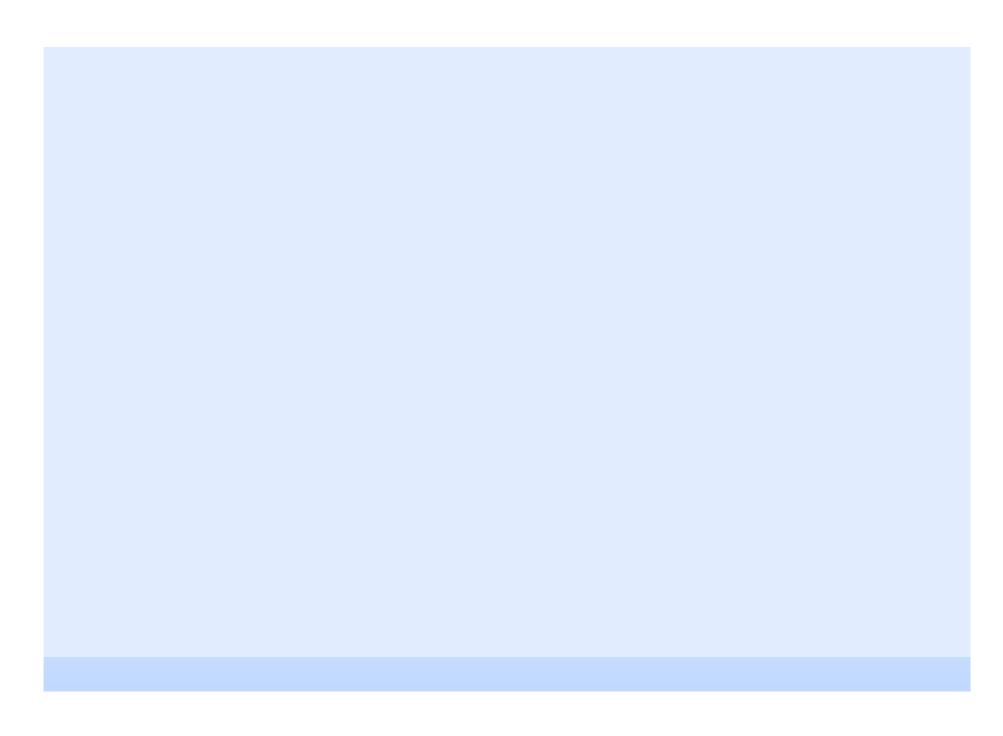
In the confluent limit , , the positions of



Global regime 1

THEOREM on global regime

As



THEOREM on local regime

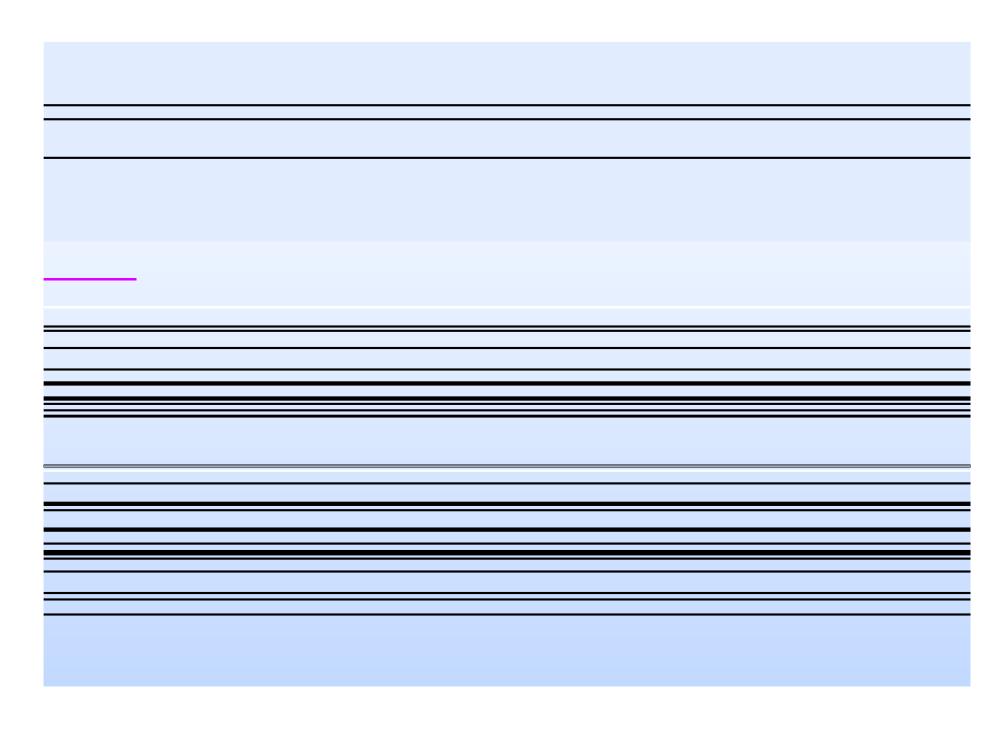
- **\blacktriangle** The correlation kernel y has scaling limits as
 - ▲ Bulk scaling near a point

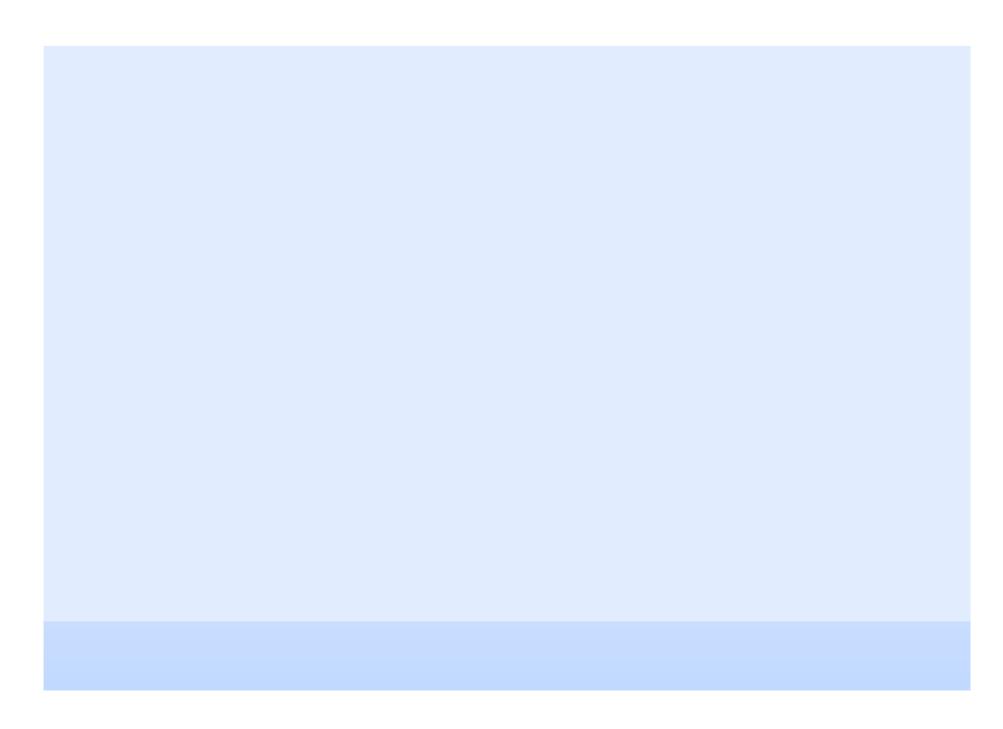
$$\frac{\mathrm{sn} - y}{-y}$$

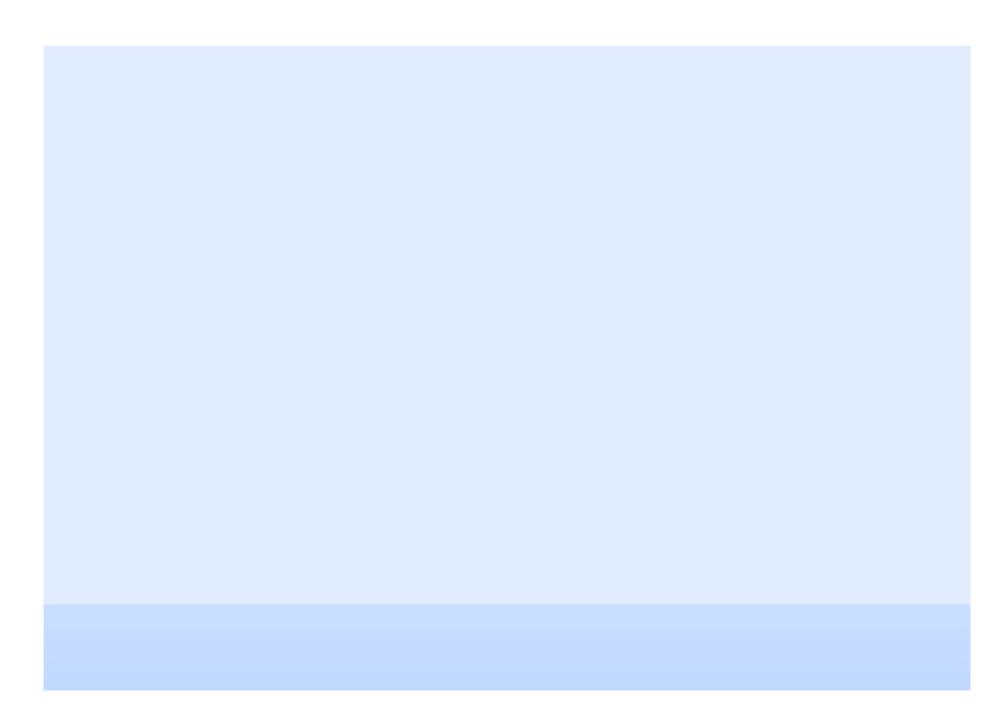
2

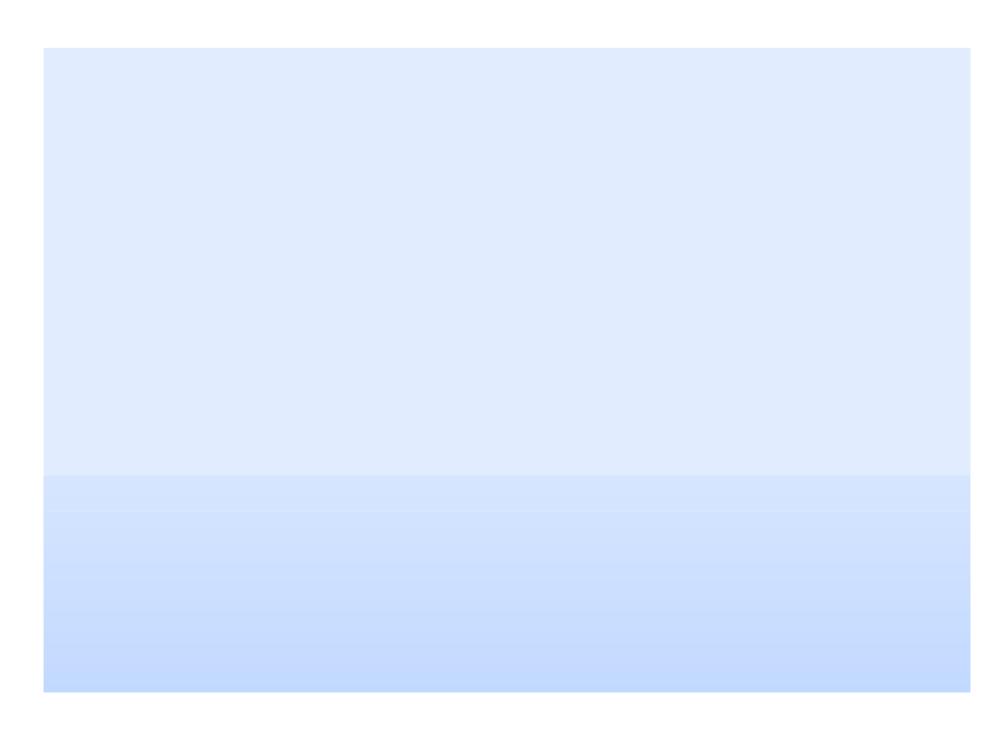
2

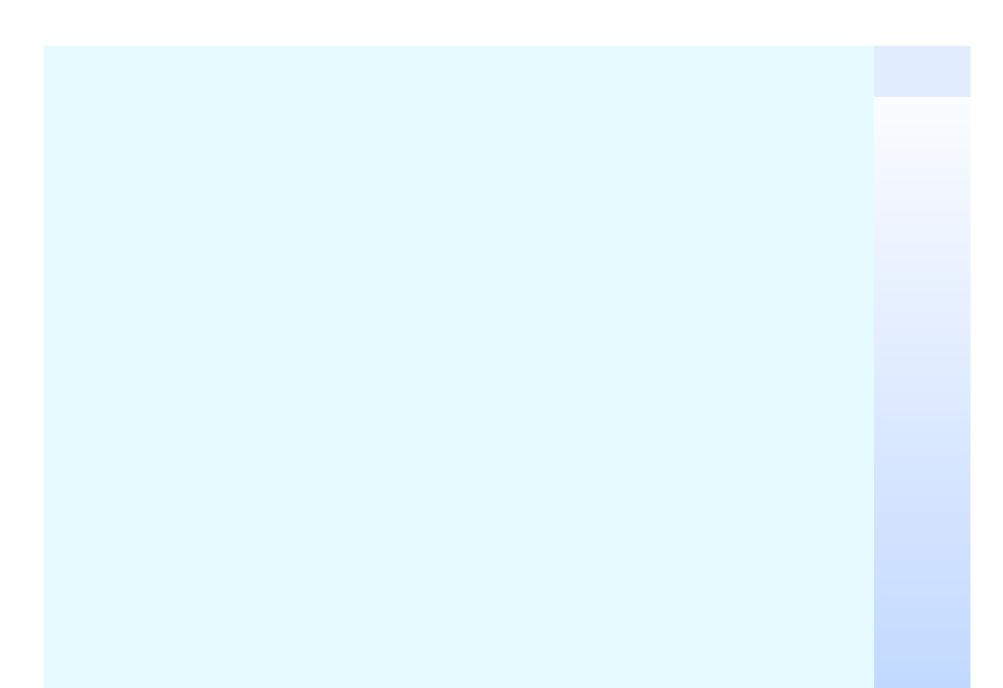
- ▲ Soft edge scaling near a point or if $\frac{A \quad A \quad y \quad -A \quad A \quad y}{-y}$
- ▲ Hard edge scaling near if











Second transformation *X U*

▲ Define the _-functions $\int f \circ g -$ and for certain constant matrices and ,

d g
$$\left(\boldsymbol{e}^{-} (\boldsymbol{e}^{-} (\boldsymbol{e}^{-} (\boldsymbol{e}^{-} \boldsymbol{e}^{-} \boldsymbol{e}^{-}$$

▲ Then we have jump matrices of the form

$$\begin{pmatrix} e^{-n} & \mathbf{x} & x & 0 \\ 0 & e^{-n} & \mathbf{x} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad x \in \Delta_1$$

