

Non-intersecting random paths

- \blacktriangle **Given a 1-D diffusion process with transition probability density** y **. Supposee** independent copies $\overline{}_1$ \mathbf{r} , \mathbf{r} , \mathbf{r} , \mathbf{r} , \mathbf{r} **conditioned to**
	- \blacktriangle start at time ▲ start at time at given points 1 $\overline{2}$ $\frac{1}{2}$ \cdots ,
	- \blacktriangle end at time \blacktriangle **end** at time at given points $\frac{1}{1}$ $\overline{2}$ $\frac{1}{2}$ \cdots ,
	- ▲ **not intersect in the full time interval .**
- \blacktriangle *R E***_{n**</sup>*B C B}* **determinantal point process. consequence of Karlin-McGregor (1959) theorem**
- \blacktriangle **The correlation kernel takes the form**

$$
y \qquad \sum_{=1} \qquad \qquad y
$$

where biorthogonal functions

Correlation kernel

 \blacktriangle **The correlation kernel for non-intersecting Brownian paths with two** endpoints can be expressed in terms of the solution of the RH problem

$$
y = \frac{1}{-y} \begin{pmatrix} 1 & y & 2 & y \end{pmatrix} + y^{-1} + \begin{pmatrix} y \\ y \end{pmatrix}
$$

weights 1 $e^{-(-1)}, 2$ $e^{-(-1)}$, where

with $\mathbf{5}$ 1 **depends onfor two weights: Bleher-Kuijlaars (2004)**

extension to more than two weights: Daems-Kuijlaars (2004)

 \blacktriangle The RH problem is then analyzed with the steepest descent method for RH **problems of Deift and Zhou.**

PROPOSITION: \blacktriangle

the positions of In the confluent limit \mathbf{y} $\overline{1}$

Global regime 1

THEOREM on global regime

A As

THEOREM on local regime

- \blacktriangle **The correlation kernel** y has scaling limits as
	- ▲ Bulk scaling near a point **because the set of the set**

$$
\frac{\sin - y}{-y}
$$

- ▲ Soft edge scaling near a point or **if** if if A A y − $\begin{array}{c|cc}\n-A & A & y\n\end{array}$ $-y$
- ▲ Hard edge scaling near **if**

Second transformation X U

N **Define the -functions** \int [{] \log } −**and** for certain **constant** matrices and **b**,

$$
d g(e^{-} (e^{-(1)} e^{(-1)})) e^{-(1)}.
$$

N **Then we have jump matrices of the form**

 $\sqrt{}$ $\overline{}$ $\overline{}$ $\overline{\mathcal{L}}$

XXXXX

second transformation X	U	
stions	$\int f \circ g$	=
as and	,	
$\frac{1}{2} \cdot g \left(e^{-x} \right) e^{-x} e^{-x} \left(e^{-x} \right)$		
$\frac{1}{2} e^{-x} \left(e^{-x} \right) e^{-x} e^{-x} \left(e^{-x} \right)$		
$\frac{1}{2} e^{-x} \left(e^{-x} \right) e^{-x} \left(e^{-x} \right)$		
$\frac{1}{2} e^{-x} \left(e^{-x} \right) e^{-x} \left(e^{-x} \right)$		
$\frac{1}{2} e^{-x} \left(e^{-x} \right) e^{-x} \left(e^{-x} \right)$		
$\frac{1}{2} e^{-x} \left(e^{-x} \right) e^{-x} \left(e^{-x} \right)$		
$\frac{1}{2} e^{-x} \left(e^{-x} \right) e^{-x} \left(e^{-x} \right)$		
$\frac{1}{2} e^{-x} \left(e^{-x} \right) e^{-x} \left(e^{-x} \right)$		
$\frac{1}{2} e^{-x} \left(e^{-x} \right) e^{-x} \left(e^{-x} \right)$		
$\frac{1}{2} e^{-x} \left(e^{-x} \right) e^{-x} \left(e^{-x} \right)$		
$\frac{1}{2} e^{-x} \left(e^{-x} \right) e^{-x} \left(e^{-x} \right)$		
$\frac{1}{2} e^{-x} \left(e^{-x} \right) e^{-x} \left(e^{-x} \right)$		
$\frac{1}{2} e^{-x} \left(e^{-x} \right) e^{-x} \left(e^{-x} \right)$		
$\frac{1}{2} e$		

