Critical asymptotics for Toeplitz determinants

Tom ClaeysUniversité de Lille 1

Brunel RMT workshopDecember 2009

Joint work with A. Its and I. Krasovsky

Toeplitz determinants

 \blacksquare Toeplitz matrix = matrix which is constant along diagonals

$$
\begin{pmatrix}\nC_0 & C_1 & C_2 & \dots & C_{n+1} \\
C_1 & C_0 & C_1 & \dots & \vdots \\
C_2 & C_1 & \dots & C_0 & C_1 \\
\vdots & \vdots & \ddots & \vdots \\
C_{n-1} & \dots & C_2 & C_1 & C_0\n\end{pmatrix}
$$

- \blacksquare Toeplitz determinant is the determinant of a Toeplitz matrix
- Asymptotics for Toeplitz determinants when the size of the matrices tends to infinity?

Toeplitz determinants

Toeplitz determinants

- \blacksquare If the weight f
	- \blacktriangleright is "smooth"
	- ► has no zeros
	- ► has a continuous logarithm (winding number around the origin)
- Szegő's strong limit theorem: as n ,

$$
\ln D_n f \qquad n \ln f_0 + \qquad k \ln f_k \ln f_k + 0 \qquad ,
$$
\nwith\n
$$
\ln f_k \qquad - \quad \frac{2}{\ln f} e^i e^{ik} d \ .
$$

Fisher-Hartwig singularities

- \blacksquare Two types of weights for which Szegő asymptotics are not valid $1,0 - 1$
	- \blacktriangleright jump discontinuities ^x
	- ► root type singularities

■ Example

0 0 0,5

 $0,5 -$

1,0

 $-1,0$ $-0,5$

f eⁱ e^{i} coseⁱ⁽⁾ e^{i} V $\mathsf{V}\ ($ $\begin{pmatrix} \mathsf{e}^\mathsf{i} \end{pmatrix}_{\mathsf{I}}$, for $<$ $<$, with Re \Rightarrow 1

Fisher-Hartwig singularities

 \blacksquare For weights with one Fisher-Hartwig singularity with parameters (root) and (jump),

$$
\ln D_n \text{ f } \qquad \text{n}V_0 + \sum_{k=1}^{\infty} k V_k V_{-k} + \sum_{k=1}^{\infty} V_k + \sum_{k=1}^{k=1} k = 1
$$

+
$$
\frac{2}{2} \ln n + \ln \frac{G + \frac{1}{2} + \frac{
$$

as n , where G is Barnes' G-function, and

$$
V_k\quad \, -\ \,
$$

2d Ising model

 \blacksquare lattice with an associated spin variable taking values \pm at each point of the lattice

■ 2-spin correlation functions are Toeplitz determinants:

$$
<\n\begin{array}{ccccc}\n00 & 0k > & D_k & f\n\end{array}
$$

for a certain symbol f

 \triangleright For T < T_c

Asymptotics as n

 \blacksquare \vee

Asymptotics

$$
\mathbf{v} \times \begin{cases}\n\mathcal{O} & +\mathcal{O} \times 2 + \mathcal{O} \times 2 \ln x, \mathbf{x} \\
\mathcal{O} e^{-c x}, & x \neq 0 \\
\vdots & \vdots \\
\mathbf{v} \times \mathbf{v} \times \mathbf{v} \times \mathbf{v} \times \mathbf{v}\n\end{cases}
$$
\n
$$
\mathbf{v} \times \begin{cases}\n\frac{2-2}{x} + \mathcal{O} & +\mathcal{O} \times 2 + \mathcal{O} \times 2 \ln x, \mathbf{x} \\
\mathcal{O} e^{-c x}, & x \neq 0\n\end{cases}
$$
\n
$$
\mathbf{x} \begin{cases}\n2 & 2 \ln x + \mathcal{O} \times \mathbf{x}, & x \neq 0 \\
\ln \frac{G(1 + x)G(1 + x)}{G(1 + 2)} + \mathcal{O} e^{-c x}, & x \neq 0\n\end{cases}
$$

 \blacksquare Extension to complex t? \bigodot

Expansion is valid for $\arg t < \frac{1}{2}$ if contour of integration does not contain poles of ^w

■ different choices of contour different branches of logarithm

- what if Im and/or Re ?
	- \triangleright w x , is not real for $x >$
	- \triangleright w can have poles on $\,$, $+$
	- ► asymptotic expansion holds only if we integrate over ^a pole-free contourexpansion not valid if nt is a pole of w x ,
	- ▶ poles correspond to Toeplitz determinants approaching different choices of integration contour expansion picks up residue of ^w residue of ^w 4.797(p)-0.5a3.959z246]TJ /R28 20

Orthogonal polynomials

 \blacksquare Heine's formula: determinant formula for orthogonal polynomials

Pna

General approach to obtain asymptotics for Toeplitzdeterminants for weight f

■ Step 1: deform weight f smoothly to a weight for which Toeplitz determinant is known (e.g. uniformweight),

$$
\mathbf{f}_t \mathbf{z}, \qquad \mathbf{f}_1 \mathbf{z} \qquad \mathbf{f}, \qquad \mathbf{f}_0 \mathbf{z}
$$

F **Step 2: try to find differential identity for** $\frac{d}{dt}$ dt

Applied to our transition between Szegő and FH

■ Step 1: deformation of weight:

$$
f_t z \qquad z \quad e^t \quad + \quad z \quad e \quad t
$$

■ Step 2: differential identity

$$
\frac{d}{dt}\ln D_n \ t \qquad \qquad + \quad e^t \left(Y^{-1} Y' \right)_{22} \ e^t \ + \qquad \qquad e^{-t} \left(Y^{-1} Y' \right)_{22} \ e^{-t}
$$

where

$$
\textbf{Y} \quad \textbf{Z} \qquad \left(\qquad \, \begin{matrix} -1 \\ p_n \\ p_{n-1} \end{matrix} \textbf{Z} \qquad \qquad \, \textbf{p}_n^{-1} \quad \, \textbf{c}_1 \, \frac{p_n(\) \, \textbf{f}(\) \textbf{d}}{ -\textbf{z} \ 2 \, \textbf{i}^{\ n}} \\ \, \textbf{n}-1 \quad \, \textbf{c}_1 \, \frac{p_{n-1}(\ ^{-1}\) \, \textbf{f}(\) \textbf{d}}{-\textbf{z} \ 2 \, \textbf{i}} \end{matrix} \right)
$$

► Y is solution of the Riemann-Hilbert problem for orthogonal polynomials