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Portfolio theory: Basics

• Portfolio weights wi, Asset returns Xt
i

•



Markowitz Optimization

• Find the portfolio with maximum expected return for a given



Markowitz Optimization

• In QM notation:

|w〉 ∝
∑

α
λ−1
α 〈Ψα|g〉|Ψα〉 = |g〉 +

∑

α
(λ−1
α − 1)〈Ψα|g〉|Ψα〉

• Compared to the naive allocation |w〉 ∝ |g〉:

– Eigenvectors with λ≫ 1 are projected out

– Eigenvectors with λ≪ 1 are overallocated

• Very important for “stat. arb.” strategies
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Empirical Correlation Matrix

• Empirical Equal-Time Correlation Matrix E

Eij =
1

T

∑

t

Xt
iX

t
j

σiσj

Order N2 quantities estimated with NT datapoints.

If T < N E is not even invertible.

Typically: N = 500 − 1000; T = 500 − 2500
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Risk of Optimized Portfolios

• Let E be a noisy, unbiased estimator of C. Using convexity

arguments, and for large matrices:

R2
in ≤ R2



In Sample vs. Out of Sample



Possible Ensembles



Null hypothesis C = I

• Goal: understand the eigenvalue density of empirical corre-

lation matrices when q = N/T = O(1)

• Eij is a sum of (rotationally invariant) matrices Etij = (Xt
iX

t
j)/T

• Free random matrix theory: R-transform are additive →

ρE(λ) =

√

4λq − (λ+ q − 1)2

2πλq
λ ∈ [(1 −√

q)2, (1 +
√
q)2]

[Marcenko-Pastur] (1967) (and many rediscoveries)

• Any eigenvalue beyond the Marcenko-Pastur band can be

deemed to contain some information (but see below)
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Null hypothesis C = I

• Remark 1: −GE(0) = 〈λ−1〉E = (1 − q)−1, allowing to com-

pute the different risks:

Rtrue =
Rin√
1 − q

; Rout =
Rin

1
−
q

•



General C Case

• The general case for C cannot be directly written as a sum

of “Blue” functions.

• Solution using different techniques (replicas, diagrams, S-

transforms):

GE(z) =

∫

dλ ρC(λ)
1

z − λ(1 − q + qzGE(z))
,

• Remark 1: −GE(0) = (1 − q)−1 independently of C

• Remark 2: One should work from ρC −→ GE and postulate

a parametric form for ρC(λ), i.e.:

ρC(λ) =
µA

(λ− λ0)1+µ
Θ(λ− λmin)
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Empirical Correlation Matrix



Eigenvalue cleaning



What about eigenvectors?

• Up to now, most results using RMT focus on



What about eigenvectors?

• Correlation matrices need a certain time T to be measured

• Even if the “true” C is fixed, its empirical determination

fluctuates:

Et = C + noise

• What is the dynamics of the empirical eigenvectors induced

by measurement noise?

• Can one detect a genuine evolution of these eigenvectors

beyond noise effects?
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What about eigenvectors?

• More generally, can one say something about the eigenvec-

tors of randomly perturbed matrices:

H = H0 + ǫH1

where H0 is deterministic or random (e.g. GOE) and H1

random.
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Eigenvectors exchange

• An issue: upon pseudo-collisions of eigenvectors, eigenvalues

exchange

• Example: 2 × 2 matrices

H11 = a, H22 = a+ ǫ, H21 = H12 = c,−→

λ± ≈ǫ→0 a+
ǫ

2
±
√

c2 +
ǫ2

4

• Let c vary: quasi-crossing for c→ 0, with an exchange of the

top eigenvector: (1,−1) → (1,1)

• For large matrices, these exchanges are extremely numerous

→ labelling problem
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Intermezzo

• Non equal time correlation matrices

Eτij =
1



Intermezzo: Singular values

• Singular values: Square root of the non zero eigenvalues

of GGT or GTG, with associated eigenvectors ukα and vki →
1 ≥ s1 > s2 > ...s(M,N)− ≥ 0

• Interpretation: k = 1: best linear combination of input vari-

ables with weights v1
i , to optimally predict the linear com-

bination of output variables with weights u1
α, with a cross-

correlation = s1.

• s1: measure of the predictive power of the set of Xs with

respect to Y s

• Other singular values: orthogonal, less predictive, linear com-

binations
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Benchmark: no cross-correlations

• Null hypothesis: No correlations between Xs and Y s:

Gtrue ≡ 0

• But arbitrary correlations among Xs, CX, and Y s, CY , are

possible

• Consider exact normalized principal components for the sam-

ple variables Xs and Y s:

X̂t
i =

1√
λi

∑

j

UijX
t
j; Ŷ tα = ...

and define Ĝ = Ŷ X̂T .
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Benchmark: Random SVD

• Final result:([Wachter] (1980); [Laloux,Miceli,Potters,JPB])

ρ(s) = (m+ n− 1)+δ(s− 1) +

√

(s2 − γ−)(γ+ − s2)

πs(1 − s2)

with

γ± = n+m− 2mn± 2
√

mn(1 − n)(1 −m), 0 ≤ γ± ≤ 1

• Analogue of the Marcenko-Pastur result for rectangular cor-

relation matrices

• Many applications; finance, econometrics (‘large’ models),

genomics, etc.

• Same problem as subspace stability: T −→ N , N = M −→ P
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Sectorial Inflation vs. Economic indicators



Back to eigenvectors: perturbation theory

• Consider a randomly perturbed matrix:

H = H0 + ǫH1

• Perturbation theory to second order in ǫ yields:

|det(G)| = 1 − ǫ2

2

∑

i∈{k+1,...,k+P}

∑

j 6∈{k+1,...,k+P}

(

〈ψi|H1|ψj〉
λi − λj

)2

.
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The GOE case

• Take H0 and H1 to be GOE matrices, and consider the sub-

space of eigenvectors in a finite interval [a, b] of the Wigner

spectrum [−2,2]

• Let ǫ = ǫ̂/
√

lnN , then, when N → ∞, P → ∞:

Q ≈ −ǫ̂
2

2

ρ(a)2 + ρ(b)2

∫ b
a ρ(λ)dλ

+
Zǫ̂2

lnN

with:

P

N
=
∫ b

a
ρ(λ)dλ.

and Z a numerical constant that only depends on the two-

point correlation function of eigenvalues [



Stability of eigenspaces: GOE



The case of correlation matrices

• Consider the empirical correlation matrix:

E = C + η η =
1

T

T
∑

t=1

(Xt



Stability of eigenvalues: Correlations



Stability of eigenspaces: Correlations



Stability of eigenspaces: Correlations



Stability of eigenspaces: Correlations



The case of correlation matrices

• Empirical results show a faster decorrelation → real dynamics

of the eigenvectors

• The case of the top eigenvector, in the limit λ1 ≫ λ2, and

for EMA:


