Universality in the two matrix model with one quartic potential

Maurice Duits Caltech

December 18, 2010

VI Brunel Workshop on Random Matrix Theory

イロト イ御 トイミト イミト ニミー りんぴ

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 / ... 이

 $\iff \left\langle \begin{array}{c} \pm 1 \\ \pm 1 \end{array} \right\rangle \rightarrow \left\langle \begin{array}{c} \pm 1 \\ \pm 1 \end{array} \right\rangle \rightarrow \left\langle \begin{array}{c} \pm 1 \\ \pm 1 \end{array} \right\rangle$

Eigenvalue density

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

 \Box

 $\begin{array}{c} 0 & 0 \\ 0 & 1 \end{array}$

The tansformed functions $Q_{j;n}$ and $P_{k;n}$

I Introduce the transformed funtions

$$
Q_{j;n}(x) = e^{-nV(x)} \frac{Z}{q_{j;n}(y)e^{-n-W(y)-xy}} dy
$$

$$
P_{k;n}(y) = e^{-nW(y)} \frac{Z}{p_{k;n}(x)e^{-n-V(x)-xy}} dx
$$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

I Note that we have the orthogonality relations

$$
\begin{aligned}\nZ & p_{k;n}(x) Q_{j;n}(x) \, \mathrm{d}x = 0; \qquad j \in k \\
Z & P_{k;n}(y) q_{j;n}(y) \, \mathrm{d}y = 0; \qquad j \in k\n\end{aligned}
$$

Let
$$
\frac{ZZ}{h_{k;n}} = p_{k;n}(x) q_{k;n}(y) e^{-n V(x) + W(y) - xy} dxdy
$$

Four kernels

De ne kernels by

$$
K_{11}(x_1; x_2) = \sum_{k=0}^{M/2} \frac{1}{h_{k;n}^2} p_{k;n}(x_1) Q_{k;n}(x_2);
$$

\n
$$
K_{22}(y_1; y_2) = \sum_{k=0}^{M/2} \frac{1}{h_{k;n}^2} p_{k;n}(y_1) q_{k;n}(y_2)
$$

\n
$$
K_{12}(x; y) = \sum_{k=0}^{M/2} \frac{1}{h_{k;n}^2} p_{k;n}(x) q_{k;n}(y)
$$

\n
$$
K_{21}(y; x) = \sum_{k=0}^{M/2} \frac{1}{h_{k;n}^2} p_{k;n}(y) Q_{k;n}(x) - e^{-n V(x) + W(y) - xy}
$$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

Eynard-Metha Theorem

Denote the eigenvalues of M_1 by x_1 ; :::; x_n and of M_2 by y_1 ; :::; y_n . The T. probability density function can be written as

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

$$
P(x_1; \ldots; x_n; y_1; \ldots; y_n) = \frac{1}{n!^2} \det \begin{cases} K \\ \end{cases}
$$

Averaging over M_2

I When averaged over M_2 we see that the eigenvalues of M_1 describe a determinantal point process with kernel K_{11} .

$$
\begin{array}{ccc}\nZ & Z \\
 & P(x_1; \ldots; x_n) \, dx_{k+1} & dx_n = \frac{(n-k)!}{n!} \det K_{11}(x_i; x_j) \, \frac{k}{i \, j=1} \\
 & \underset{n-k \text{ times}}{=} \\
 & \end{array}
$$

KO KKOK KEK KEK LE I DAG

I This is a particular example of a so-called biorthogonal ensemble.

Asymptotic analysis

Question: Find a full asymptotic description of the biorthogonal polynomials and the associated kernels.

I There exist several Riemann-Hilbert characterizations of the biorthogonal polynomials Ercolani-Mclaughlin '01, Kapaev '03, Bertola-Eynard-Harnad '03, Kuijlaars-McLaughlin '05

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

I Except for the special in which both V and W are quadratic Ercolani-McLaughlin '01, a steepest descent analysis turns out to be complicated.

Multiple Orthogonality

- **I** The main idea in Kuijlaars-McLaughlin '05 is to interpret the polynomials as multiple orthogonal polynomials.
- \Box De ne the weight function w_i by

$$
w_j(x) = e^{-nV(x)} \int_{R}^{Z} y^j e^{-n(W(y) - xy)} dy;
$$
 $j = 0; 1; \dots; d-2;$

where $d = \text{degree}(W)$.

The polynomials $p_{k:n}$ are multiple orthogonal polynomials of type II with respect to the weights w_i on R. For $p_{n;n}$ this means that Z $p_{n; n}(x) x^l w_j(x) \, \, \mathrm{d}x = 0; \quad l = 0; \ldots; n_j - 1; \quad j = 0; 1; \ldots; d - 2;$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

where n_i is the integer part of $(n + d - 2 - i) = (d - 1)$.

The Riemann-Hilbert problem

- ^I For multiple orthogonal polynomials a Riemann-Hilbert characterization is known Van Assche-Geronimo-Kuijlaars '01.
- I We seek for a d d matrix valued function Y such that

Y is analytic in C \ R
\n
$$
\begin{array}{c}\n\mathbf{O}_1 \quad w_0(x) & \cdots & w_2(x) \\
\hline\n\vdots & \ddots & \vdots \\
\mathbf{V}_+(x) = Y_-(x) \mathbf{E} \quad 1 \\
\vdots & \ddots & \vdots \\
\mathbf{V}(z) = (I + O(1=z)) \operatorname{diag}(z^n; z^{-n_0}; \cdots; z^{-n_{d-2}}); \quad z \vdots \quad 1\n\end{array}
$$

where n_i is the integer part of $(n + d - 2 - j) = (d - 1)$.

The solution of the Riemann-Hilbert problem

I The solution exists and is unique. Moreover

 $Y_{11}(z) = p_{n:n}(z)$

Van Assche-Geronimo-Kuijlaars '01

I Also the kernel $K_{11}^{(n)}$ can be expressed in Y

$$
K_{11}^{(n)}(x; y) = \frac{1}{2 \, i(x-y)} \, 0 \quad w_0(y) \qquad \qquad w_2(y) \, Y_+(y)^{-1} Y_+(x) \mathbf{R}_{0}^{10}(\mathbf{X})
$$

Daems-Kuijlaars '04

^I A steepest descent analysis for the RH problem in the general situation is still an important open problem!

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

K ロ X (日) X (日)

Quartic potential

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·

$t = 0$

K ロ X (日) X (日)

The equilibrium problem for $t = 0$

We seek to minimize the energy functional

$$
I(\begin{array}{ccc} 1; & 2; & 3 \end{array}) = \sum_{j=1}^{3} \log |x - y|^{-1} d_j(x) d_j(y)
$$

-
$$
\sum_{j=1}^{3} \sum_{y=1}^{7} \log |x - y|^{-1} d_j(x) d_{j+1}(y)
$$

+
$$
\sum_{j=1}^{7} \left(V(x) - \frac{3}{4} \right)^{4-3} d_j(x)
$$

among all measures $\binom{1; 2; 3}$ satisfying

- \bullet 1 is a measure on R with $_1(R) = 1$
- **2** 2 is a measure on iR with $_2$ (iR) = 2=3

$$
3 \text{ is a measure on } R \text{ with } 3(R) = 1=3
$$

4₂ with

d (z) =
$$
\frac{P_{\overline{3}} 4=3|Z|^{1=3}}{2} |dz|
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

The minimizer

イロトメタトメミトメミト (ミ) の女々

The minimizer

Theorem (D-Kuijlaars '09)

The minimizer $\begin{pmatrix} 1; 2; 3 \end{pmatrix}$ has the following properties

 \bullet \blacksquare is supported on \blacksquare nitely many intervals $\left[\begin{smallmatrix} f & -1 \end{smallmatrix} \right]$ and there exists real analytic h_i such that

$$
\frac{\mathrm{d} \ \mathbf{1}(x)}{\mathrm{d} x} = h_j(x) \mathbf{P}_{\overline{(b_j - x)(x - a_j)}}; \quad x \ 2 \ [a_j; b_j]
$$

2 2 is supported on iR and $2 =$ on i[$-c$; c]. Moreover, there exists an analytic function \rightarrow such that

$$
d(-z)(y) = z(y)|dy|
$$

and $_2$ vanishes as as square root near $y = ic$.

 \bullet ³ is supported on R and there exists a function $\frac{3}{3}$ which is real analytic in $R \setminus \{0\}$ and such that

$$
d_{3}(x) = 3(x)dx
$$

KORK ERKER ADE YOUR

Example: $V(x) = x^2 = 2$ *and* = 1

イロト イ御 トイミト イミト ニミー りんぴ

$t \not\in 0$ and V even

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

The equilibrium problem for $t \notin 0$ and V even

We seek to minimize the energy functional

$$
J(\begin{bmatrix} 1; & 2; & 3 \end{bmatrix}) = \begin{vmatrix} 3 & \frac{2Z}{1} & 0 & 0 \\ 1 & -1 & 0 \end{vmatrix} |x - y|^{-1} d_{j}(x) d_{j}(y)
$$

\n
$$
= \begin{vmatrix} 3 & \frac{2Z}{1} & 0 & 0 \\ 0 & 1 & 1 \end{vmatrix} |x - y|^{-1} d_{j}(x) d_{j+1}(y)
$$

\n
$$
= \begin{vmatrix} 2 & 2 & 0 \\ 1 & 1 & 1 \end{vmatrix}
$$

\n
$$
+ \begin{vmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \end{vmatrix} |x - y|^{-1} d_{j}(x) d_{j+1}(y)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

among all measures $\begin{pmatrix} 1; 2; 3 \end{pmatrix}$ satisfying

$$
1
$$
 is a measure on R with $1(R) = 1$

2 is a measure on iR with
$$
2(iR) = 2=3
$$

$$
3 \text{ is a measure on } R \text{ with } 3(R) = 1=3
$$

4 2

De nition of V_1

I The external eld V_1 is de ned by

$$
V_1(x) = V(x) + \min_{y \geq R} (W(y) - xy); \quad x \geq R
$$

I The external eld V_3 is the dierence between the other two extreme values of $W(y) - xy$ (viewed as a function in y).

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

De nition of

Again we consider

$$
W^0(1) - z = 1^3 + t! - z = 0;
$$

but now for z 2 iR. Then

$$
\frac{\mathrm{d} (z)}{|\mathrm{d} z|} = -\operatorname{Re} ! \; \mathbf{1}(z);
$$

where ! $_1$ is the solution of the cub iderhe solution of theof theofofi34342(of)-348 Ton

K ロ X イロ X K ミ X K ミ X ミ → S V C Y C

The minimizer

Theorem (D-Geudens-Kuijlaars '10, D-Kuijlaars-Mo '10)

There is unique minimizer $(-1, 2, 3)$ of the energy functional I. Moreover, the measure \rightarrow is the weak limit of the normalized zero distribution of the polynomial $p_{n:n}$

$$
\frac{1}{n} \sum_{x \; : \; p_{n,n}(x) = 0}^{\times} x \quad 1
$$

KOD KARD KED KED E VOOR

as $n!$ 1.

Supports of the measure

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Theorem (D-Kuijlaars-Mo '10)

The minimizer $(-1, 2, 3)$ has the following properties

 \bullet \bullet 1 is supported on \bullet nitely many intervals \varGamma'

Theorem (D-Kuijlaars-Mo '10)

Let $W(y) = y^4 = 4 + ty^2 = 2$ and V even. Let ₁ be the rst component of the minimizer of L. Then

I The measure $_1$ also describes the limiting mean eigenvalues density for the matrix M_1 , i.e.

$$
\lim_{n \to \infty} \frac{1}{n} K_{11}^{(n)}(x; x) = \frac{d_1(x)}{dx}
$$

^I Universality: For x in the bulk:

$$
\lim_{n \to \infty} \frac{1}{\sqrt{c}} K_{11} x + \frac{u}{cn} x + \frac{v}{cn} = \frac{\sin (u - v)}{(u - v)}
$$

KOD KARD KED KED E VOOR

For x at regular endpoints: Airy kernel.

Supports of the measure

In the analysis we distinguish the cases

Case I: $0 \ 2 \ 5(-1)$, $0 \ 2 \ 5(-7)$ and $0 \ 2 \ 5(-3)$ Case II: $0 \ncong S(-1)$, $0 \ncong S(-2)$ and $0 \ncong S(-3)$ Case III:0 $2 S(1)$, 0 $2 S(-2)$ and 0 $2 S(3)$ Case IV:0 2 S(1), 0 2 S(- 2) and 0 2 S(3) Case V: $0 \neq S(-1)$, $0 \neq S(-2)$ and $0 \neq S(-3)$

KOD KARD KED KED E VOOR

Critical phenomena occur when going from one case to the other.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

On top of each the supports $S(1, 1)$, $S(-2)$ and $S(3)$ (also the cuts of the corresponding Riemann surface)

Phase diagram for $V(x) = x^2 = 2$

I Case I ! Case II: Merging in $S(-_1)$! Painleve II

I Case IV ! Case III: $S(1)$ splits and $S(−2)$ merges ! Pearcey

I Intersection point: simulataneous transition in all three measures. A new kernel appears D-Geudens '11?.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 / ... 이

Derivation of the equilibrium problem

- I If $V(x) = x^2 = 2$ then $q_{k,n}$ are orthogonal polynomials on the real line. The asymptotics of these polynomials is well-known. In particular the asymptotics for the recurrence coe cients
- **I** The polynomials $p_{k:n}$ satisfy a ve term recurrence and the coecients can be expressed in terms of the recurrence coe cients of the other family. So we know the asymptotic behavior of the recurrence coe cients.
- I The zeros of the polynomials are the eigenvalues of the 'Jacobi' matrix. I The zeros of the polynomials a64 -1.246 Td $[(The) -342(zeros) -343(of) -343(the)]$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Banded Toeplitz matrices

Let $T_n(a)$ be a Toeplitz matrix

$$
T_n(a)_{jk} = a_{j-k}; \qquad j; k = 1; \ldots; n
$$

for which the symbol a has only nitely many Fourier coe cients

$$
a(z) = \begin{cases} \n\mathcal{R} & \text{if } q > 0; \quad a_{-p}; a_q \neq 0 \\ \n\text{if } q > 0; \quad a_{-p}; a_q \neq 0 \n\end{cases}
$$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

What is the limiting behavior of the spectrum $(T_n(a))$ as $n!$ 1?

Example

イロト イ御 トイミト イミト ニミー りんぴ

Example

イロト イ御 トイミト イミト ニミー りんぴ

An associated Riemann surface

The central object to study is the algebraic equation

$$
a(z) - \sum_{j=-q}^{\infty} a_q z^j - \quad = 0:
$$

For each this equation has $p + q$ solutions which we order according to magnitude

$$
0<|z_1(-)|~~\cdots~~|z_{p+q}(-)|
$$

De ne

$$
k = \{ | |Z_{q+k}()| = |Z_{q+k+1}()| \}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

for $k = -q + 1$; :::: $p - 1$.

(Assumption: $\text{gcd}\{k \mid a_k \neq 0\} = 1$)

The contours k and the measures k

I The contour $_0$ is bounded, the other are unbounded. All consist of nitely many analytic arcs

I De ne the measure k on k by

$$
d_{k}() = \frac{1}{2f7.1671.063 \text{ Td} [(t0)] \text{TJ/F} 230164 \text{ Tf} 145.096 107.3254}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

1

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 / ... 이

Equilibrium problem for banded Toeplitz matrices

Theorem (D-Kuijlaars '08)

The vector of measures $\begin{pmatrix} 1 & q+1 \end{pmatrix}$: : : : $\begin{pmatrix} 1 & p-1 \end{pmatrix}$ is the unique minimizer of the energy functional E de ned by

$$
E\left(-q+1; \ldots, p-1\right) = \sum_{k=-q+1}^{p+1} \log \frac{1}{|x-y|} d_{k}(x) d_{k}(y)
$$

$$
= \sum_{k=-q+1}^{p+2} \log \frac{1}{|x-y|} d_{k}(x) d_{k+1}(y)
$$

where each measure \overline{k} is a measure on \overline{k} with total mass

$$
k(k) = \frac{\frac{q+k}{q}}{\frac{p-k}{p}}; \quad k \quad 0
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Equilibrium problem for banded Toeplitz matrices

Theorem (D-Kuijlaars '08)

The vector of measures $\begin{pmatrix} 1 & q+1 \end{pmatrix}$: : : : $\begin{pmatrix} 1 & p-1 \end{pmatrix}$ is the unique minimizer of the energy functional E de ned by

$$
E\left(-q+1; \ldots, p-1\right) = \sum_{k=-q+1}^{p+1} \log \frac{1}{|x-y|} d_{k}(x) d_{k}(y)
$$

$$
= \sum_{k=-q+1}^{p+2} \log \frac{1}{|x-y|} d_{k}(x) d_{k+1}(y)
$$

where each measure \overline{k} is a measure on \overline{k} with total mass

$$
k(k) = \frac{\frac{q+k}{q}}{\frac{p-k}{p}}; \quad k \quad 0
$$

KOD KARD KED KED E VOOR

Generalization to Toeplitz matrices with rational symbols (Delvaux-D '10)

The biorthogonal polynomials were de ned by the relation ZZ $p_{k; n}(x) q_{j; n}(y) e^{-n(V(x) + W(y) - xy)} dxdy = 0; \quad j \notin k$

and we were interested in the case

$$
W(y) = \frac{1}{4}y^4 + \frac{1}{2}tx^2
$$
 and $V(x) = \frac{1}{2}x^2$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

and asymptotics for $p_{n;n}$ and K_{11} .

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 / ... 이

Recurrence coe cients (1)

The orthogonal polynomials $q_{k,n}$ **for** $e^{-n y^4 = 4 - \frac{2y^2}{3}}$ satisfy a recurrence relation

$$
yq_{k;n}(y) = q_{k+1;n}(y) + a_{k;n}q_{k-1;n}(y)
$$

I Bleher and Its proved that in the limit $k; n!$ 1 and $k=n!$ we have

$$
\lim_{n! \to 1 \; ; \; k=n!} a_{k;n} = \frac{2 + \frac{p-4}{4+12}}{6}; \qquad \qquad > \frac{4}{4} = 4
$$

and

$$
\lim_{n \to \infty} \lim_{k \to n!} a_{k;n} = \frac{8}{\frac{2}{n} \cdot \frac{P_{4-4}}{2}}; \quad k \text{ even } , \quad < 4 = 4
$$

メロトメ 御きメモトメモト (重) にくい