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Eigenvalue density





RelationwithtwomatrixmodelIThebiorthogonalpolynomialsaretheaveragecharacteristicpolynomialspn;n(x)=E(det(x-M1))qn;n(y)=E(det(y-M2)):ITheeigenvalueformadeterminantalprocesswithkernelthatis constructedoutofthesebiorthogonalpolynomials

Mehta-Shukla'94,Eynard-Mehta'98.



The tansformed functions Qj;n and Pk;n

I Introduce the transformed funtions

Qj;n(x) = e-nV (x)

Z
qj;n(y)e-n

�
W (y)-�xy

�
dy

Pk;n(y) = e-nW (y)

Z
pk;n(x)e-n

�
V (x)-�xy

�
dx

I Note that we have the orthogonality relationsZ
pk;n(x)Qj;n(x) dx = 0; j 6= kZ
Pk;n(y)qj;n(y) dy = 0; j 6= k

I Let

h2
k;n =

ZZ
pk;n(x)qk;n(y)e-n

�
V (x)+W (y)-�xy

�
dxdy



Four kernels

De�ne kernels by

K11(x1; x2) =

n-1X
k=0

1

h2
k;n

pk;n(x1)Qk;n(x2);

K22(y1; y2) =

n-1X
k=0

1

h2
k;n

Pk;n(y1)qk;n(y2)

K12(x ; y) =

n-1X
k=0

1

h2
k;n

pk;n(x)qk;n(y)

K21(y ; x) =

n-1X
k=0

1

h2
k;n

Pk;n(y)Qk;n(x) − e-n
�

V (x)+W (y)-�xy
�



Eynard-Metha Theorem

I Denote the eigenvalues of M1 by x1; : : : ; xn and of M2 by y1; : : : ; yn. The
probability density function can be written as

P(x1; : : : ; xn; y1; : : : ; yn) =
1

n!2
det

 �
K



Averaging over M2

I When averaged over M2 we see that the eigenvalues of M1 describe a
determinantal point process with kernel K11.Z

� � �
Z

| {z }
n-k times

P(x1; : : : ; xn)dxk+1 � � �dxn =
(n − k)!

n!
det
�
K11(xi ; xj)

�k

i;j=1

I This is a particular example of a so-called biorthogonal ensemble.



Asymptotic analysis

Question: Find a full asymptotic description of the biorthogonal polynomials
and the associated kernels.

I There exist several Riemann-Hilbert characterizations of the biorthogonal
polynomials
Ercolani-Mclaughlin ’01, Kapaev ’03, Bertola-Eynard-Harnad ’03,

Kuijlaars-McLaughlin ’05

I Except for the special in which both V and W are quadratic
Ercolani-McLaughlin ’01, a steepest descent analysis turns out to be
complicated.



Multiple Orthogonality

I The main idea in Kuijlaars-McLaughlin ’05 is to interpret the polynomials as
multiple orthogonal polynomials.

I De�ne the weight function wj by

wj(x) = e-nV (x)

Z
R

y je-n(W (y)-�xy) dy ; j = 0; 1; : : : d − 2:

where d = degree(W ).

I The polynomials pk;n are multiple orthogonal polynomials of type II with
respect to the weights wj on R. For pn;n this means thatZ

R
pn;n(x)x l wj(x) dx = 0; l = 0; : : : ; nj − 1; j = 0; 1; : : : ; d − 2;

where nj is the integer part of (n + d − 2 − j)=(d − 1).



The Riemann-Hilbert problem

I For multiple orthogonal polynomials a Riemann-Hilbert characterization is
known Van Assche-Geronimo-Kuijlaars ’01.

I We seek for a d � d matrix valued function Y such that8>>>>>>>>>>><>>>>>>>>>>>:

Y is analytic in C \ R

Y+(x) = Y-(x)

0BBB@
1 w0(x) : : : w2(x)

1
. . .

1

1CCCA ; x 2 R

Y (z) = (I +O(1=z)) diag(zn; z-n0 ; : : : ; z-nd-2); z !1
where nj is the integer part of (n + d − 2 − j)=(d − 1).



The solution of the Riemann-Hilbert problem

I The solution exists and is unique. Moreover

Y11(z) = pn;n(z)

Van Assche-Geronimo-Kuijlaars ’01

I Also the kernel K
(n)
11 can be expressed in Y

K
(n)
11 (x ; y) =

1

2�i(x − y)

�
0 w0(y) � � � w2(y)

�
Y+(y)-1Y+(x)

0BBB@
1
0
...
0

1CCCA
Daems-Kuijlaars ’04

I A steepest descent analysis for the RH problem in the general situation is
still an important open problem!



Equilibriumproblem

I



Quartic potential



t = 0



The equilibrium problem for t = 0

We seek to minimize the energy functional

I (�1; �2; �3) =
3X

j=1

ZZ
log |x - y |-1 d�j (x)d�j (y)

-
2X

j=1

ZZ
log |x - y |-1 d�j (x)d�j+1(y)

+

Z „
V (x) -

3

4
�4=3|x |4=3

«
d�1(x)

among all measures (�1; �2; �3) satisfying

1 �1 is a measure on R with �1(R) = 1

2 �2 is a measure on iR with �2(iR) = 2=3

3 �3 is a measure on R with �3(R) = 1=3

4 �2 � � with

d�(z) =

p
3�4=3|z |1=3

2�
|dz |



The minimizer



The minimizer

Theorem (D-Kuijlaars ’09)

The minimizer (�1; �2; �3) has the following properties

1 �1 is supported on �nitely many intervals [r
j=1[aj ; bj ] and there exists real

analytic hj such that

d�1(x)

dx
= hj(x)

p
(bj − x)(x − aj); x 2 [aj ; bj ]

2 �2 is supported on iR and �2 = � on i[−c; c]. Moreover, there exists an
analytic function  2 such that

d(�− �2)(y) = �2(y)|dy |

and �2 vanishes as as square root near y = �ic.

3 �3 is supported on R and there exists a function �3 which is real analytic
in R \ {0} and such that

d�3(x) = �3(x)dx



Example: V (x) = x2=2 and � = 1

−4 −3 −2 −1 0 1 2 3





t 6= 0 and V even



The equilibrium problem for t 6= 0 and V even

We seek to minimize the energy functional

I (�1; �2; �3) =
3X

j=1

ZZ
log |x - y |-1 d�j (x)d�j (y)

-
2X

j=1

ZZ
log |x - y |-1 d�j (x)d�j+1(y)

+

Z
V1(x) d�1(x) +

Z
V3(x) d�3(x)

among all measures (�1; �2; �3) satisfying

1 �1 is a measure on R with �1(R) = 1

2 �2 is a measure on iR with �2(iR) = 2=3

3 �3 is a measure on R with �3(R) = 1=3

4 �2 � �



De�nition of V1

I The external �eld V1 is de�ned by

V1(x) = V (x) + min
y2R

(W (y) − �xy) ; x 2 R

I The external �eld V3 is the di�erence between the other two extreme
values of W (y) − �xy (viewed as a function in y).

6?V3

V1 − V

W (y) − �xy

|x | > x� and t < 0.



De�nition of �

Again we consider

W 0(!) − �z = !
3 + t!− �z = 0;

but now for z 2 iR. Then

d�(z)

|dz |
=
�

�
Re!1(z);

where !1



The minimizer

Theorem (D-Geudens-Kuijlaars ’10, D-Kuijlaars-Mo ’10)

There is unique minimizer (�1; �2; �3) of the energy functional I . Moreover,
the measure �1 is the weak limit of the normalized zero distribution of the
polynomial pn;n,

1

n

X
x : pn,n(x)=0

�x ! �1

as n!1.



Supports of the measure

Theorem (D-Kuijlaars-Mo ’10)

The minimizer (�1; �2; �3) has the following properties

1 �1 is supported on �nitely many intervals [r



Theorem (D-Kuijlaars-Mo ’10)

Let W (y) = y 4=4 + ty 2=2 and V even. Let �1 be the �rst component of the
minimizer of I . Then

I The measure �1 also describes the limiting mean eigenvalues density for
the matrix M1, i.e.

lim
n!1 1

n
K

(n)
11 (x ; x) =

d�1(x)

dx

I Universality:
For x� in the bulk:

lim
n!1 1

cn
K11

�
x� +

u

cn
; x� +

v

cn

�
=

sin�(u − v)

�(u − v)

For x� at regular endpoints: Airy kernel.



Supports of the measure

In the analysis we distinguish the cases

Case I: 0 2 S(�1), 0 =2 S(�− �2) and 0 2 S(�3)

Case II: 0 =2 S(�1), 0 =2 S(�− �2) and 0 2 S(�3)

Case III:0 =2 S(�1), 0 2 S(�− �2) and 0 =2 S(�3)

Case IV:0 2 S(�1), 0 =2 S(�− �2) and 0 =2 S(�3)

Case V: 0 =2 S(�1), 0 =2 S(�− �2) and 0 =2 S(�3)

Critical phenomena occur when going from one case to the other.



Case I Case II Case III Case IV Case V

On top of each the supports S(�1), S(�− �2) and S(�3)

(also the cuts of the corresponding Riemann surface)



Phase diagram for V (x) = x2=2

�

t

� =
p

t + 2

� =
q

− 1
t

1

-1-2

p
2

Case I

Case IV

Case III

Case II

I Case I ! Case II: Merging in S(�1) ! Painlev�e II

I Case IV ! Case III: S(�1) splits and S(�− �2) merges ! Pearcey

I Intersection point: simulataneous transition in all three measures.
A new kernel appears D-Geudens ’11?.





Derivation of the equilibrium problem

I If V (x) = x2=2 then qk;n are orthogonal polynomials on the real line. The
asymptotics of these polynomials is well-known. In particular the
asymptotics for the recurrence coe�cients

I The polynomials pk;n satisfy a �ve term recurrence and the coe�cients
can be expressed in terms of the recurrence coe�cients of the other family.
So we know the asymptotic behavior of the recurrence coe�cients.

I The zeros of the polynomials are the eigenvalues of the ‘Jacobi’ matrix.
I



Banded Toeplitz matrices

Let Tn(a) be a Toeplitz matrix�
Tn(a)

�
jk

= aj-k ; j ; k = 1; : : : ; n

for which the symbol a has only �nitely many Fourier coe�cients

a(z) =

pX
j=-q

aj z
j
; p; q > 0; a-p; aq 6= 0

What is the limiting behavior of the spectrum �(Tn(a)) as n!1?



Example
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Example
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An associated Riemann surface

The central object to study is the algebraic equation

a(z) − � =

pX
j=-q

aqz j − � = 0:

For each � this equation has p + q solutions which we order according to
magnitude

0 < |z1(�)| � : : : � |zp+q(�)|

De�ne
�k = {� | |zq+k(�)| = |zq+k+1(�)|};

for k = −q + 1; : : : ; p − 1.

(Assumption: gcd{k | ak 6= 0} = 1)





TworesultontheasymptoticbehaviorTheorem(Schmidt-Spitzer'60) TheeigenvaluesofTn (a)accumulateonthecontour�0 � (T n ( a)) !�0asn!1.Theorem(Hirschman'67)Themeasure�0describesthelimitingdistributionoftheeigenvaluesalong�0,1



Equilibrium problem for banded Toeplitz matrices

Theorem (D-Kuijlaars ’08)

The vector of measures (�-q+1; : : : ; �p-1) is the unique minimizer of the
energy functional E de�ned by

E(�-q+1; : : : �p-1) =

p-1X
k=-q+1

ZZ
log

1

|x − y |
d�k(x)d�k(y)

−

p-2X
k=-q+1

ZZ
log

1

|x − y |
d�k(x)d�k+1(y)

where each measure �k is a measure on �k with total mass

�k(�k) =

�
q+k

q
; k � 0

p-k
p
; k � 0

Generalization to Toeplitz matrices with rational symbols (Delvaux-D ’10)



Equilibrium problem for banded Toeplitz matrices

Theorem (D-Kuijlaars ’08)

The vector of measures (�-q+1; : : : ; �p-1) is the unique minimizer of the
energy functional E de�ned by

E(�-q+1; : : : �p-1) =

p-1X
k=-q+1

ZZ
log

1

|x − y |
d�k(x)d�k(y)

−

p-2X
k=-q+1

ZZ
log

1

|x − y |
d�k(x)d�k+1(y)

where each measure �k is a measure on �k with total mass

�k(�k) =

�
q+k

q
; k � 0

p-k
p
; k � 0

Generalization to Toeplitz matrices with rational symbols (Delvaux-D ’10)



Back to the biorthogonal polynomials

The biorthogonal polynomials were de�ned by the relationZZ
pk;n(x)qj;n(y)e-n(V (x)+W (y)-�xy) dxdy = 0; j 6= k

and we were interested in the case

W (y) =
1

4
y 4 +

1

2
tx2 and V (x) =

1

2
x2

and asymptotics for pn;n and K11.





Recurrence coe�cients (1)

I The orthogonal polynomials qk;n for e-n
�

y4=4-�2y2=2
�

satisfy a recurrence
relation

yqk;n(y) = qk+1;n(y) + ak;nqk-1;n(y)

I Bleher and Its proved that in the limit k; n!1 and k=n! � we have

lim
n!1; k=n!�

ak;n =
�2 +

p
�4 + 12�

6
; � > �

4
=4

and

lim
n!1; k=n!�

ak;n =

8<:
�2-
p
�4-4�

2
; k even

�2+
p
�4-4�

2
; k odd

; � < �
4
=4








