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Eigenvalue density










The tansformed functions Qj;n and Pi:n

1 Introduce the transformed funtions
z

Qiin(x) =e™™ 0 ga(y)e™ VT gy
VA
Pinly) = ™™ pin(x)e™" YOOT M dx

1 Note that we have the orthogonality relations
A
Pi;n (X)Qjin(x) dx = 0; &k
z
Pi:n(y)djin(y) dy = 0; i &k

1 Let 77
hin = Pn(X)qin(y)e™" VO™ axdy



Four kernels

De ne kernels by

>t
Kua(X1;%2) = thk;n(Xl)Qk;n(XZ);
k=0 Kin
>t
Kaa(y1;¥2) = 2 Pi;n(Y1)k;n(y2)
k=0 Kin
>t
Kia(x;y) = 2 Pi;n (X)Gk;n(Y)
k=0 Kin
1 —-n X))+ — X
Kaalyix) = 7=Pian(y)Qun(x) —e7" YOTWOmw
k=0 Kin



Eynard-Metha Theorem




Averaging over M,

1 When averaged over M, we see that the eigenvalues of M1 describe a
determinantal point process with kernel Kj;.
Z 27
(n —k)!

P(X1;::;%Xn)dXk+1  dXn = py det Kll(Xi;Xj)ik:jzl

[{z-}

n—k times

1 This is a particular example of a so-called biorthogonal ensemble.



Asymptotic analysis

Question: Find a full asymptotic description of the biorthogonal polynomials
and the associated kernels.

1 There exist several Riemann-Hilbert characterizations of the biorthogonal
polynomials

Ercolani-Mclaughlin "01, Kapaev 03, Bertola-Eynard-Harnad '03,
Kuijlaars-McLaughlin *05

1 Except for the special in which both V and W are quadratic

Ercolani-McLaughlin "01, a steepest descent analysis turns out to be
complicated.



Multiple Orthogonality

I The main idea in Kuijlaars-McLaughlin "05 is to interpret the polynomials as
multiple orthogonal polynomials.

1 De ne the weight function w; by
Z
Wi(x) =e ™V Yl WO gy = 0;1;0d — 2
R

where d = degree(W ).
1 The polynomials pk.n are multiple orthogonal polynomials of type Il with

respect to the weights wj on R. For py;n this means that
Z

pn;n(x)x'wj(x)dx:o; I=0;::5;nm—1;, j=0;1;:::;d—2;
R

where n; is the integer part of (n+d —2 —j)=(d —1).



The Riemann-Hilbert problem

1 For multiple orthogonal polynomials a Riemann-Hilbert characterization is
known Van Assche-Geronimo-Kuijlaars *01.

I We seek forad d matrix valued function Y such that

Y is analytic in C\ R

! e
Y+(x)_Y_(x)§ . E; X 2R

where nj is the integer part of (n+d —2 —j)=(d — 1).



The solution of the Riemann-Hilbert problem

1 The solution exists and is unique. Moreover
Y11(2) = Pn;n(2)
Van Assche-Geronimo-Kuijlaars "01

1 Also the kernel Kl(ln) can be expressed in Y

011
m 1 -1 0
Kn (X;Y):m 0 wol(y) w2(y) Y+ (y) Y+ (x) .

0

Daems-Kuijlaars "04

1 A steepest descent analysis for the RH problem in the general situation is
still an important open problem!



Q>



Quartic potential
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The equilibrium problem for ¢t =0

We seek to minimize the energy functional
> Z
IC 1 25 3)= log x —y[™*d j(x)d j(¥)

XZZ
- logix —y[™t d j0)d j+1(y)
=

+ (V(x)—z 4:3\x\4:3) d 100

among all measures ( 1; 2; 3) satisfying
@ 1 isameasure on Rwith 1(R)=1
® 2 is ameasure on iR with ,(iR) = 2=3
® 3 is ameasure on R with 3(R) = 1=3
(4] with
2 p§ 4:3\2\1:3

d @)= ———— ldz|



The minimizer



The minimizer

Theorem (D-Kuijlaars *09)

The minimizer ( 1; 2; 3) has the following properties
@ 1 is supported on nitely many intervals [j=;[a;;b;] and there exists real
analytic h; such that

| © M —
ddl>EX):hj(x) (b —x)(x —aj); x 2 [a;bj]

® 2 issupported on iR and > = on i[—c;c]. Moreover, there exists an
analytic function  such that

d( — 2)y) = 2(y)ldy|

and , vanishes as as square root near y = ic.

® 3 is supported on R and there exists a function 3 which is real analytic
in R\ {0} and such that



Example: V/(x)

— X2:2 and
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t &0 and V even

Q>



The equilibrium problem for ¢ & 0 and V even

We seek to minimize the energy functional
> Z
I( 15 25 3)= loglx —y[™td j(x)d ()

=1

)7(22

- logx =y~ d j(x)d j+1(y)
=1
z z
+ Vi(x) d 1(x) + Vz(x) d 3(x)

among all measures ( 1; 2; 3) satisfying
@ 1 isameasure on Rwith 1(R)=1
® 2 is ameasure on iR with ,(iR) = 2=3
® 3 is ameasure on R with 3(R) = 1=3
o »



De nition of \;

I The external eld Vi is de ned by

Vi(x) =V (x)+min(W(y)— xy); x2R
y2R

1 The external eld Vs is the di erence between the other two extreme
values of W (y) — xy (viewed as a function in y).

Vay |

x| >x andt<0.



De nition of

Again we consider

where ¥,



The minimizer

Theorem (D-Geudens-Kuijlaars *10, D-Kuijlaars-Mo ’10)

There is unique minimizer ( 1; »2; 3) of the energy functional |. Moreover,

the measure 1 is the weak limit of the normalized zero distribution of the
olynomial pn;

poly Pn;n, 1 >

L]
[N

X 1 pn,n(x)=0
asn ¥t 1.



Supports of the measure

Theorem (D-Kuijlaars-Mo ’10)

The minimizer ( 1; 2; 3) has the following properties
@ 1 is supported on nitely many intervals [



Theorem (D-Kuijlaars-Mo ’10)
Let W (y) =y*=4 + ty2=2 and V even. Let ; be the rst component of the
minimizer of |. Then

I The measure ; also describes the limiting mean eigenvalues density for
the matrix My, i.e.

Ll .oy doa(X)
nll!m:L ﬁKli (x;x) = Ix
1 Universality:
For x in the bulk:
. 1 u v sin (u—v)
lim —Ki X +—;Xx +— =———=
nsdcn Ot Jrcn Jrcn (u—v)

For x at regular endpoints: Airy kernel.



Supports of the measure

In the analysis we distinguish the cases

Case :02S( 1),02S( — 2)and02S( 3)

Case 1: 02S( 1),02S( — 2)and02S( 3)

Case lIl02S( 1),02S( — 2)and 02 S( 3)
Case IV:02S( 1),02S( — 2)and02S( 3)
Case V:02S( 1),02S( — 2)and02S( 3)

Critical phenomena occur when going from one case to the other.



Case | Case Il Case Il Case IV Case V
On top of each the supports S( 1), S( — 2) and S( 3)

(also the cuts of the corresponding Riemann surface)




Phase diagram for V(x) = x?=2

Case Il
IQt +2

Case Il

Case |

ase IV t

T

-2 -1

I Case |l ¥ Case ll: Merging in S( 1) ¥ Painleve Il

I Case IV ¥ Case lll: S( 1) splitsand S( — ) merges ¥ Pearcey
1 Intersection point: simulataneous transition in all three measures.

A new kernel appears D-Geudens "117.






Derivation of the equilibrium problem

1 1If V(x) = x2=2 then gk, are orthogonal polynomials on the real line. The
asymptotics of these polynomials is well-known. In particular the
asymptotics for the recurrence coe cients

1 The polynomials pk.n satisfy a ve term recurrence and the coe cients
can be expressed in terms of the recurrence coe cients of the other family.
So we know the asymptotic behavior of the recurrence coe cients.

1 The zeros of the polynomials are the eigenvalues of the ‘Jacobi’ matrix.
|



Banded Toeplitz matrices

Let Th(a) be a Toeplitz matrix

Ta(a) 4

= aj—k; j;k=1::5;n
for which the symbol a has only nitely many Fourier coe cients

x
alz)= a7y  p;ga>0; apag60
j=-q

What is the limiting behavior of the spectrum (Tn(a))asn ¥ 1.7?
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An associated Riemann surface

The central object to study is the algebraic equation

X :
a(z)— = a2 — =0
i=-q
For each  this equation has p + q solutions which we order according to
magnitude

O<lzi( )l it |zZpwql )l
De ne
k={ | ‘Zq+k( )= |Zq+k+1( )|},

fork=—q+1;:::;p—1.

(Assumption: gcd{k | ax 6 0} =1)



The contours , and the measures

1 The contour ¢ is bounded, the other are unbounded. All consist of nitely
many analytic arcs

1 De ne the measure ¢ on i by

1
4 k()= 37 167 1.063 Td [(t0)] TI/F230164 Tf 145.096 107.3252






Equilibrium problem for banded Toeplitz matrices

Theorem (D-Kuijlaars "08)

energy functional E de ned by

77
B 1
E( —q+1;:10 p-1) = log ——d «(x)d k(y)
k=—q+1 ‘Xiy‘
77
B2 1
= log ——d «(x)d k+1(y)

k=—q+1 |X - yl

where each measure ¢ is a measure on  with total mass



Equilibrium problem for banded Toeplitz matrices

Theorem (D-Kuijlaars "08)

energy functional E de ned by

NZZ

1
E( —q+15110 p-1) = log ——d «(x)d «(y)
k=—qg+1 ‘Xiy‘
B zZ 1
- log ﬁd k(X)d k+1(y)
k=—q+1 y

where each measure ¢ is a measure on  with total mass

Generalization to Toeplitz matrices with rational symbols (Delvaux-D '10)



Back to the biorthogonal polynomials

The biorthogonal polynomials were de ned by the relation
zZ

Picn (X)sn(y )e "V OTWOIT D gxdy —0;  jek

and we were interested in the case
B VR 1,
W(y) = 4y + 2tx and V (x) = 2x

and asymptotics for pn.n and Kis.






Recurrence coe cients (1)

. = 4: —_ 2 2: .
1 The orthogonal polynomials gy, for e™ ¥ =4~ ¥"=2 satisfy a recurrence
relation

YOk:n(Y) = Gk+1:n(Y) + ak:nOk—1:n(y)
1 Bleher and Its proved that in the limitk;n ¥ 1 and k=n ¥ we have

2 4
lim Ak:n = : > 4=
n® Ad; k=n " 6
and
8, p
2_ 4_
lim a < o 4 ; Keven < 4y
N ke KN T -2,y ’ -












