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Random matrices with external source

Random matrices with external source
� space of n × n Hermitian matrices with probability

measure
1

Zn

exp(−nTr (V (M) − AM))dM,

where
◮ V is a polynomial of even degree with positive leading



Random matrices with external source

� if A = 0, unitary ensemble

1

Zn

exp(−nTr V (M))dM.

� we will study the case

A =
1

n
diag(0, 1, . . . , n − 1)

◮ for V (x) = cx2, eigenvalues behave like n
non-intersecting Brownian motions starting at 0
and ending at 0, 1

n
, 2

n
, . . . , n−1

n



Random matrices with external source

� Joint probability distribution of eigenvalues in the
ensemble

1

Zn

exp(−nTr (V (M) − AM))dM

is given by
1

Z̃n

| det(enaiλj)i,j=1,...,n|
∏

i<j

|λi − λj|
n
∏

j=1

e−nV (λj)dλj

◮ if A = 1
n

diag (01



Random matrices with external source

� A = diag(a, . . . , a, −a, . . . , −a) (Bleher-Kuijlaars,
Bleher-Delvaux-Kuijlaars, Adler-van Moerbeke)
◮ vector equilibrium problem
◮ critical point: Pearcey kernel

� A = diag(a1, a2, . . . , ak, 0, . . . , 0) with k fixed
(Baik-Wang, Bertola-Buckingham-Lee-Pierce,
Adler-Délépine-van Moerbeke)
◮ every non-zero eigenvalue of A is responsable

for at most one outlier-eigenvalue of M

� External source matrix with n different eigenvalues
(Eynard-Orantin)
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External source

� A = 1
n

diag(0, 1, . . . , n − 2, n − 1)



Limiting mean eigenvalue density

� limiting mean distribution minimizes

1

2

∫∫

log|t − s|−1dµ(t)dµ(s) +
1

2

∫∫

log|e





Eigenvalue correlation kernel

Random matrices with external source
A = 1

n
diag(0, 1, . . . , n − 2, n − 1):

� correlation kernel for eigenvalues is given by

Kn(x, y) = e−n

2
V (x)e−n

2
V (y)

n−1
∑

k=0

pk(x)qk(e
y)

◮ polynomials pk of degree k and qj of degree j are
determined by the orthogonality conditions

∫

R

pk(x)qj(e
x)e−nV (x)dx = δkj

◮ pk’s are type II multiple OPs with n orthogonality weights
1, ex, e2x, . . . , e(n−1)x
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Eigenvalue correlation kernel

Random matrices with external source
A = 1

n
diag(0, 1, . . . , n − 2, n − 1):

� correlation kernel for eigenvalues is given by

Kn(x, y) = e−n

2
V (x)e−n

2
V (y)

n−1
∑

k=0

pk(x)qk(e
y)

◮ polynomials pk of degree k and qj of degree j are
determined by the orthogonality conditions

∫

R

pk(x)qj(e
x)e−nV (x)dx = δkj

◮ qj ’s are related to type I multiple orthogonal polynomials
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Eigenvalue correlation kernel

Interpretation of the polynomials in terms of the
random matrix ensemble

1

Zn

exp(−nTr (V (M) − AM))dM

or the determinantal point process

1

Z̃n

∏

i<j

(λi − λj)
∏

i<j

(eλi − eλj)
n
∏

j=1

e−nV (λj)dλj .

� pp





Eigenvalue correlation kernel



Eigenvalue correlation kernel

� RH problem for usual OPs (Fokas-Its-Kitaev ’92)
(a) Y is analytic in C \ R,

(b) Y+(x) = Y−(x)
(

1 w(x)
0 1

)

for x ∈ R,

(c) Y (z) = (I + O(z−1))
(

zn 0
0 z−n

)

as z → ∞,

� Unique solution given by

Y (z) =











κ−1
n pn(z) κ−1

n

1

2πi

∫

R

pn(s)w(s)

s − z
ds

−2πiκn−1pn−1(z) −κn−1

∫

R

pn−1(s)w(s)

s − z
ds











,
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Eigenvalue correlation kernel

� polynomials defined by
∫

R

pk(x)qj(e
x)e−nV (x)dx = δkj

� standard RH problem for MOPs is of size n + 1 -
inconvenient for n large

� let
Y1(z) = κ−1

n pn(z)

and

Y2(z) =
−κ−1

n

2πi

∫

R

pn(s)

ez − es
e−nV (s)ds.

�



RH problem for polynomials

1. Y = (Y1, Y2), where Y1 is analytic in C \ R, and Y2 is analytic in



RH problem for polynomials

� there is also a 2 × 2 matrix RH problem
◮ unlike for usual orthogonal polynomials,
detY (z) 6= 1

◮ taking inverses is not possible
◮ no advantage

� there is a dual RH problem for Ỹ = (Ỹ1, Ỹ2), where

Ỹ1 = −κnqn(e
z), Ỹ2(z) =

−κn

2πi

∫

R

qn(e
s)

z − s
e−nV (s)ds.
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RH problem for polynomials

1. Ỹ = (Ỹ1, Ỹ2), where Ỹ2



RH problem for polynomials

� Asymptotic analysis of the RH problem if the
support of µ is one interval: Deift/Zhou steepest
descent analysis

� Modifications compared to analysis for OPs
◮ construction of two g-functions

g(z) :=

∫

log(z − y)dµ(y)

g̃(z) :=

∫

log(ez − ey)dµ(y).

◮ Crucial step: transformation of the RH problem
to a non-local scalar RH problem in the complex
plane
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RH problem for polynomials

� Transformation to shifted RH problem of the form
1. F : C \ Σ → C is analytic
2. for z ∈ Σ, we have

F+(z) = F−(z)Jn(z) + F±(f(z))J̃n(z),

with f : Σ → Σ,
3. lim



Outlook

� Universality
◮ sine kernel
◮ Airy kernel

� multi-cut case

� large n behavior in more general point processes of
the form

1

Z̃n

∏

i<j

(λi − λj)
∏

i<j

(f(λi) − f(λj))
n
∏

j=1

e−nV (λj)dλj.
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