Fluctuations and Extreme Values in Multifractal Patterns¹

Yan V Fyodorov

School of Mathematical Sciences

Queen Mary

Project supported by the EPSRC grant EP/J002763/1

VIII Brunel-Bielefeld Workshop on Random Matrix Theory, 14th of December 2012

¹Based on: **YVF**, **P Le Doussal** and **A Rosso** J Stat Phys: **149** (2012), 898-920 **YVF**, **G Hiary**, **J Keating** Phys. Rev. Lett. 108 , 170601 (2012) & **arXiv:1211.6063**

Disorder-generated multifractals:

Disorder-generated multifractal patterns display high variability over a wide range of space or time scales, associated with huge fluctuations in intensity which can be visually detected. Another common feature is presence of certain long-ranged **powerlaw-type correlations** in data values.

Intensity of a multifractal wavefunction at the point of Integer Quantum Hall Effect. Courtesy of F. Evers, A. Mirlin and A. Mildenberger.

From disorder-generated multifractals to log-correlated fields:

Disorder-generated multifractal patterns of intensities $h(r)$ are typically **self-similar** $\mathbb{E} \text{ } f h^q(\mathsf{r}_1) h^s(\mathsf{r}_2) g \diagup \text{ } \frac{\mathsf{L}}{\mathsf{a}}$ $y_{q:s}$ jr $_{1}$ r $_{2}$ j w 0 0 m 11.322 0 l S Q BT $\angle f$. θ . L-gouslar
Eogniansities h(r) are tynically self-similar

rf

f.

 \overline{r}

Ideal Gaussian periodic 1/f noise:

We will use a (regularized) model for ideal Gaussian periodic **1/f** noise defined as $V(t) = \int_{0}^{t} \frac{1}{n+1} \rho \frac{1}{\overline{n}} V_n e^{int} + V_n e^{int}$; t 2 [0;2)

where v_n ; \overline{v}_n are **complex standard Gaussian i.i.d.** with $E f v_n \overline{v}_n g = 1$. It implies the formal covariance structure:

$$
\mathbb{E} fV(t_1)V(t_2)g = 2 \ln j2 \sin \frac{t_1 \ t_2}{2}j; \quad t_1 \neq t_2
$$

Regularization procedure (YVF & **Bouchaud 2008):** subdivide the interval [0; 2) by a finite number M of observation points $t_k = \frac{2}{M}k$ where $k = 1, \ldots, M$, and replace the function $V(t)$; $t \geq [0, 2)$ with a sequence of M random mean-zero Gaussian variables V_k correlated according to the M M covariance matrix $C_{km} = \mathbb{E} fV_{k}V_{m}g$ such that the off-diagonal entries are given by

$$
C_{k\boldsymbol{\epsilon} m} = 2 \ln j2 \sin -
$$

Circular-logarithmic model (YF & **Bouchaud 2008):**

An example of the $1=f$ signal sequence generated for $M = 4096$ according to the above prescription is given in the figure.

The upper line marks the typical value of the **extreme value threshold** $V_m = 2 \ln M - \frac{3}{2} \ln \ln M$. The lower line is the level $\frac{1}{2}V_m$ and blue dots mark points supporting $V_i > \frac{1}{2}V_m$.

Questions we would like to answer: How many points are typically above a given level of the noise? How strongly does this number fluctuate for M ! 1 from one realization to the other? How to understand the typical position V_m and statistics of the **extreme values** (maxima or minima), etc. And, after all, what parts of the answers are **universal** and what is the universality class?

Statistics of the counting function $N_{\mathcal{M}}(x)$ and threshold of extreme values:

By relating moments of the counting function $N_M(x) = \int_{x}^{x} M(y) dy$ for logcorrelated 1=f **noise** to **Selberg integrals** we are able to show that the probability density for the (scaled) counting function $n = N_M(x) = N_t(x)$ is given by:

$$
P_{x}(n) = \frac{4}{x^{2}} e^{-n \frac{4}{x^{2}}} n^{-1 + \frac{4}{x^{2}}}; \quad n \quad n_{c}(x): \quad 0 < x < 2:
$$

with n_c ! 1 for M ! 1 and the **characteristic scale** $N_t(x)$ given by

$$
N_t(x) = \frac{M_1^{1-x^2-4}}{x^2 \ln M} \frac{1}{(1-x^2-4)} = \mathbb{E} f N_M(x) g \frac{1}{(1-x^2-4)}
$$

Note: For x ! 2 the **typical**

From $1=f$ **noise to Riemann** $(1=2 + it)$:

One can argue that **log-mod** of the Riemann zeta-function (1=2 + it) **locally** resembles a (non-periodic) version of the **1/f noise**. One can exploit this fact to predict statistics of **moments** and **high values** of the Riemann zeta along the critical line using the previously exposed theory (**YVF, Hiary, Keating** 2012).

Our approach to statistics of $(1=2 + it)$:

We expect a **single** unitary matrix of size N_T = $log(T=2)$ 1 to model the Riemann zeta $(1=2 + it)$, statistically, over a rangee

Our predictions for (1=2 + it) **and CUE characteristic polynomials:** For the **maximum value**: $_{max}(T) = max_{T} t_{T+2} j (1=2 + it) j$ we expect $log_{max}(T)$ $log N_T \frac{c}{2}$ $\frac{c}{2}$ log log N_T + + [rand. noise

Our predictions for (1=2 + it) **and CUE characteristic polynomials:**

We further expect

 $log_{max}(T)$ $log N_T$ $\frac{3}{4}$ $\frac{3}{4}$ log log N_T $\frac{1}{2}$ $\frac{1}{2}x$; $N_T = \log(T=2)$

where x is distributed with a probability density behaving in the tail as $(x! 1)$ x **.**

Figure 1: Statistics of maxima for CUE polynomials (left: $N = 50/10^6$ samples) and j $(1=2 + it)$ *j* (right: $N_T = 65$; 10⁵ samples) compared to periodic 1=f noise prediction $p(x) = 2e^X K_0(2e^{x=2})$.

Threshold of extreme values for self-similar multifractal fields:

The value $c = \frac{3}{2}$ 2 is a universal feature of systems with **logarithmic** correlations. Apart from $1=f$ noise and its incarnations (characteristic polynomials of random matrices & zeta-function along the critical line) the new universality class is believed to include the $2D$ Gaussian free field, branching random walks & polymers on disordered trees, some models in turbulence and financial mathematics and, with due modifications the **disorder-generated multifractals**.

Namely, consider a multifractal random **probability measure** p_i M i; i = 1 :::: \overline{M} such that \overline{M} \overline{p}_i = 1 characterized by a general non-parabolic **singularity spectrum** $f()$ with the left endpoint at $\qquad =$ > 0. Then very similar consideration based on insights from **Mirlin** & **Evers** 2000 suggests that the **extreme value threshold** should be given by $p_m = M$ m, where m

 m 3 2 1 $\overline{f^{\prime\prime}(\)}$ $\frac{\ln \ln M}{\ln M}$) $\ln p_m$ $\ln M + \frac{3}{2}$ 2 1 $\frac{1}{f^{\prime\prime}()}$ In In ${\cal M}$

Threshold of extreme values for self-similar multifractal fields:

Work in progress: testing such a prediction for multifractal eigenvectors of a N N random matrix ensemble introduced by E. Bogomolny & O. Giraud, *Phys. Rev. Lett.* **106** 044101 (2011) based on **Rujsenaars-Schneider** model of N interacting particles. Preliminary numerics is supportive of the theory.

Figure 2: Statistics of maxima for eigenvectors of RS model for sample sizes $M = 2ⁿ$ with $n = 8$; : : : ; 12. **left:** raw data right: each curve is shifted by 2 1 f 0() ln ln M**; data by Olivier Giraud**