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Disorder-generated multifractals:

Disorder-generated multifractal patterns display high variability over a wide range
of space or time scales, associated with huge fluctuations in intensity which can
be visually detected. Another common feature is presence of certain long-ranged
powerlaw-type correlations in data values.

Intensity of a multifractal wavefunction at the point of Integer Quantum Hall Effect.

Courtesy of F. Evers, A. Mirlin and A. Mildenberger.





From disorder-generated multifractals to log-correlated fields:

Disorder-generated multifractal patterns of intensities h(r) are typically self-similar
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Ideal Gaussian periodic 1/f noise:

We will use a (regularized) model for ideal Gaussian periodic 1/f noise defined as
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�int� ; t 2 [0; 2�)

where vn; vn are complex standard Gaussian i.i.d. with Efvnvng = 1. It implies
the formal covariance structure:

E fV (t1)V (t2)g = �2 ln j2 sin t1�t2
2 j; t1 6= t2

Regularization procedure (YVF & Bouchaud 2008): subdivide the interval [0; 2�)
by a finite number M of observation points tk = 2�

M k where k = 1; : : : ;M , and
replace the function V (t); t 2 [0; 2�) with a sequence of M random mean-zero
Gaussian variables Vk correlated according to the M �M covariance matrix
Ckm = E fVkVmg such that the off-diagonal entries are given by

Ck 6=m = �2 ln j2 sin �

(m�m)jC



Circular-logarithmic model (YF & Bouchaud 2008):

An example of the 1=f signal sequence generated for M = 4096 according to the
above prescription is given in the figure.

The upper line marks the typical value of the extreme value threshold Vm = 2 lnM � 3
2 ln lnM .

The lower line is the level 1p
2
Vm and blue dots mark points supporting Vi > 1p

2
Vm.

Questions we would like to answer: How many points are typically above a given level of

the noise? How strongly does this number fluctuate for M ! 1 from one realization to the other?

How to understand the typical position Vm and statistics of the extreme values (maxima or minima),

etc. And, after all, what parts of the answers are universal and what is the universality class?





Statistics of the counting function NM(x) and threshold of extreme values:

By relating moments of the counting function NM(x) =
R1
x
�M(y) dy for log-

correlated 1=f noise to Selberg integrals we are able to show that the probability
density for the (scaled) counting function n = NM(x)=Nt(x) is given by:
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with nc !1 for M !1 and the characteristic scale Nt(x) given by

Nt(x) = M1�x2=4
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Note: For x ! 2 the typical



From 1=f noise to Riemann �(1=2 + it):

One can argue that log-mod of the Riemann zeta-function �(1=2 + it) locally
resembles a (non-periodic) version of the 1/f noise. One can exploit this fact to
predict statistics of moments and high values of the Riemann zeta along the critical
line using the previously exposed theory (YVF, Hiary, Keating 2012).

Our approach to statistics of �(1=2 + it):

We expect a single unitary matrix of size NT = log (T=2�) � 1 to model the
Riemann zeta �(1=2 + it), statistically, over a range e)

From



Our predictions for �(1=2 + it) and CUE characteristic polynomials:
For the maximum value: �max(T ) = maxT�t�T+2� j�(1=2 + it)j) we expect

log �max(T ) � logNT � c
2 log logNT + 
 + [rand. noise



Our predictions for �(1=2 + it) and CUE characteristic polynomials:

We further expect

log �max(T ) � logNT � 3
4 log logNT � 1

2 x; NT = log (T=2�)

where x is distributed with a probability density behaving in the tail as �(x! �1) � jxj ex.
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Figure 1: Statistics of maxima for CUE polynomials (left: N = 50; 106samples ) and j�(1=2 + it)j (right:

NT = 65; 105 samples ) compared to periodic 1=f noise prediction p(x) = 2exK0(2ex=2).



Threshold of extreme values for self-similar multifractal fields:

The value c = 3
2 is a universal feature of systems with logarithmic correlations.

Apart from 1=f noise and its incarnations (characteristic polynomials of random
matrices & zeta-function along the critical line) the new universality class is believed
to include the 2D Gaussian free field, branching random walks & polymers on
disordered trees, some models in turbulence and financial mathematics and, with
due modifications the disorder-generated multifractals.

Namely, consider a multifractal random probability measure pi � M��i; i =
1; : : : ;M such that

PM
i=1 pi = 1 characterized by a general non-parabolic

singularity spectrum f(�) with the left endpoint at � = �� > 0. Then very similar
consideration based on insights from Mirlin & Evers 2000 suggests that the extreme
value threshold should be given by pm = M��m, where �m
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Threshold of extreme values for self-similar multifractal fields:

Work in progress: testing such a prediction for multifractal eigenvectors of a N �
N random matrix ensemble introduced by E. Bogomolny & O. Giraud, Phys. Rev.
Lett. 106 044101 (2011) based on Rujsenaars-Schneider model of N interacting
particles. Preliminary numerics is supportive of the theory.

Figure 2: Statistics of maxima for eigenvectors of RS model for sample sizes M = 2n with n = 8; : : : ; 12.

left: raw data right: each curve is shifted by �� lnM + 3
2

1
f 0(��)

ln lnM ; data by Olivier Giraud


