

Model : random Gaussian landscape

Hamiltonian (energy)

Model : random Gaussian landscape

Hamiltonian (energy)

Model : random Gaussian landscape

Hamiltonian (energy)

Glass transition for single particle at zero temperature

$$\mathcal{H}(\mathbf{x}) = \frac{\mu}{2} \sum_{k=1}^{N} \mathbf{x}_{k}^{2} + \mathbf{V}(\mathbf{x}_{1}, ..., \mathbf{x}_{N})$$
: random energy surface (*N* dimensions)

Replica trick analysis (temperature T) \Rightarrow critical value $\mu_c = \overline{f''(0)}$ [Mézard, Parisi (1991)] [Fyodorov, Sommers (2007)]

Glass transition for single particle at zero temperature

$$\mathcal{H}(\mathbf{x}) = \frac{\mu}{2} \sum_{k=1}^{N} \mathbf{x}_{k}^{2} + \mathbf{V}(\mathbf{x}_{1}, ..., \mathbf{x}_{N})$$
: random energy surface (*N* dimensions)

Replica trick analysis (temperature T) \Rightarrow critical value $\mu_c = \overline{f''(0)}$. [Mézard, Parisi (1991)] [Fyodorov, Sommers (2007)]

$$\underline{\text{At } \mathcal{T} = 0:} \qquad \mu < \mu_{\text{c}}$$

Glass transition for single part cle at zero temperature

$$\mathcal{H}(\mathbf{x}) = \frac{\mu}{2} \sum_{k=1}^{N} x_k^2 + V(x_1, ..., x_N)$$

Glass transition for single particle at zero temperature

$$\mathcal{H}(\mathbf{x}) = \frac{\mu}{2} \sum_{k=1}^{N} x_{k}^{2} + \mathbf{V}(\mathbf{x}_{1}, ..., \mathbf{x}_{N})$$

Outline

Computing the mean number of minima $\langle \mathcal{N} \rangle$

$$\langle \mathcal{N}_{m} \rangle = m(\mathbf{x}) d^{N} \mathbf{x}$$
 with $m(\mathbf{x}) =$ density of minima

Computing the mean number of minima $\langle \mathcal{N}_{|} \rangle$

$$\langle \mathcal{N}_{m} \rangle = m(\mathbf{x}) d^{N} \mathbf{x}$$
 with $m(\mathbf{x}) =$ density of minima.

Recall : $\mathcal{H} = \frac{\mu}{2} \sum_{k=1}^{N} x_k^2 + V(x_1, \mathbf{m} \mathbf{x})$

Computing the mean number of minima $\langle \mathcal{N} \rangle$

$$\langle \mathcal{N}_{m} \rangle = m(\mathbf{x}) d^{N} \mathbf{x}$$
 with $m(\mathbf{x})$ = density of minima.

Recall : $\mathcal{H} = \frac{\mu}{2} \sum_{k=1}^{N} x_k^2 + V(x_1, ..., x_N)$ with V random Gaussian.

Kac-Rice expression for m :

Computing the mean number of minima $\langle \mathcal{N}_{\perp} \rangle$

$$\langle \mathcal{N}_{m} \rangle = m(\mathbf{x}) d^{N} \mathbf{x}$$
 with $m(\mathbf{x})$ = density of minima.

Recall : $\mathcal{H} = \frac{\mu}{2} \sum_{k=1}^{N} x_k^2 + V(x_1, ..., x_N)$ with V random Gaussian.

Heaviside :
$$(A) = \begin{pmatrix} 1 & \text{if } A \text{ positive definite matrix} \\ 0 & \text{otherwise} \end{pmatrix}$$

Computing the mean number of minima $\langle \mathcal{N} \rangle$

$$\langle \mathcal{N}_{m} \rangle = m(\mathbf{x}) d^{N} \mathbf{x}$$
 with $m(\mathbf{x})$ = density of minima.

Recall : $\mathcal{H} = \frac{\mu}{2} \sum_{k=1}^{N} x_k^2 + 607.97011 \text{J}\text{R}2\text{Td}[(04\text{J}\text{R}6491 = 4\text{J}\text{R}8672]\text{T}\text{J}\text{R}21190 \text{-}$

Link with RMT $_{m}(\mathbf{x}) = \left\{ \det \begin{array}{c} 2\\ i,j \end{array} \mathcal{H} \right\} = \left\{ \begin{array}{c} 2\\ j,j \end{array} \mathcal{H} \right\} = \left\{ \begin{array}{c} 2\\ k=1 \end{array} \right\} \left\{ \begin{array}{c} k \end{array} \mathcal{H} \right\}_{V}$

Translational invariant

Link with RMT

$$m(\mathbf{x}) = \left\{ \det \begin{array}{c} 2\\ i,j \end{array} \right\} \left\{ \begin{array}{c} 1\\ i,j \end{array} \right\} \left\{ \begin{array}{c} k \end{array} \right\} \left\{ \left\{ \begin{array}{c} k \end{array} \right\} \left\{ \begin{array}{c} k \end{array} \right\} \left\{ \begin{array}{c} k \end{array} \right\} \left\{ \left\{ \end{array} \right\} \left\{ \left\{ \begin{array}{c} k \end{array} \right\} \left\{ \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \left\{ \end{array} \right\} \left\{ \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \left\{ \end{array} \right\} \left\{ \end{array} \} \left\{ \end{array} \right\} \left\{ \end{array} \\ \left\{ \end{array} \\ \left\{ \end{array} \\ \left\{ \end{array} \right\} \left\{ \end{array} \\ \left\{ \end{array} \\ \left\{$$

Translational invariant covariance structure of $V \Rightarrow \langle {}_{k}V {}_{i} {}_{j}V \rangle = 0$ (at same x) and $\langle {}_{j}V {}_{k}V \rangle = - {}_{j,k}f'(0) \equiv {}_{j,k}{}^{2}$. Thus

$$m(\mathbf{x}) = \frac{1}{(\sqrt{2}^{2})^{N}} e^{-\frac{\mu^{2} \mathbf{x}^{2}}{2\sigma^{2}}} \langle |\det(\mu \operatorname{Id} - M)| \quad (\mu \operatorname{Id} - M) \rangle_{M}$$

Hessian = ${}^{2}_{i,j}\mathcal{H} = \mu \operatorname{Id} - M$ with $M_{i,j} = -i_{j}V$

Link with RMT

$$m(\mathbf{x}) = \left\{ \det \begin{array}{c} 2\\ i,j \end{array} \right\} \left\{ \begin{array}{c} 1\\ i,j \end{array} \right\} \left\{ \begin{array}{c} k \end{array} \right\} \left\{ \left\{ \begin{array}{c} k \end{array} \right\} \left\{ \begin{array}{c} k \end{array} \right\} \left\{ \begin{array}{c} k \end{array} \right\} \left\{ \left\{ \end{array} \right\} \left\{ \left\{ \begin{array}{c} k \end{array} \right\} \left\{ \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \left\{ \end{array} \right\} \left\{ \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \left\{ \end{array} \right\} \left\{ \end{array} \} \left\{ \end{array} \right\} \left\{ \end{array} \\ \left\{ \end{array} \\ \left\{ \end{array} \\ \left\{ \end{array} \right\} \left\{ \end{array} \\ \left\{ \end{array} \\ \left\{$$

Translational invariant covariance structure of $V \Rightarrow \langle {}_{k}V {}_{i} {}_{j}V \rangle = 0$ (at same x) and $\langle {}_{j}V {}_{k}V \rangle = - {}_{j,k}f'(0) \equiv {}_{j,k}{}^{2}$. Thus

$$m(\mathbf{x}) = \frac{1}{(\sqrt{2}^{2})^{N}} e^{-\frac{\mu^{2} \mathbf{x}^{2}}{2\sigma^{2}}} \langle |\det(\mu \operatorname{Id} - M)| \quad (\mu \operatorname{Id} - M) \rangle_{M}$$

$$\text{Hessian} = {}^{2}_{i,j}\mathcal{H} = \mu \text{ Id} - M \text{ with } M_{i,j} = -i_{j}V$$

Link with RMT

$${}_{m}(\mathbf{x}) = \left\{ \det \begin{array}{c} 2\\ i,j \end{array} \right\} \left\{ \begin{array}{c} 1\\ i,j \end{array} \right\} \left\{ \begin{array}{c} k \end{array} \right\} \left\{ \left\{ \begin{array}{c} k \end{array} \right\} \left\{ \begin{array}{c} k \end{array} \right\} \left\{ \left\{ \end{array} \right\} \left\{ \left\{ \begin{array}{c} k \end{array} \right\} \left\{ \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \left\{ \end{array} \right\} \left\{ \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \left\{ \end{array} \right\} \left\{ \end{array} \} \left\{ \end{array} \right\} \left\{ \end{array} \\ \left\{ \end{array} \\ \left\{ \end{array} \\ \left\{ \end{array} \right\} \left\{ \end{array} \\ \left\{ \end{array} \left\{ \end{array} \right\} \left\{ \end{array} \right\} \left\{ \end{array} \\ \left\{ \end{array} \right\} \left\{ \end{array} \\ \left\{ \end{array}$$

Translational invariant covariance structure of $V \Rightarrow \langle {}_{k}V {}_{i} {}_{j}V \rangle = 0$ (at same x) and $\langle {}_{j}V {}_{k}V \rangle = - {}_{j,k}f'(0) \equiv {}_{j,k}{}^{2}$. Thus

$$m(\mathbf{x}) = \frac{1}{(\sqrt{2}^{2})^{N}} e^{-\frac{\mu^{2} \mathbf{x}^{2}}{2\sigma^{2}}} \langle |\det(\mu \operatorname{Id} - M)| \quad (\mu \operatorname{Id} - M) \rangle_{M}$$

$$\text{Hessian} = {}^{2}_{i,j}\mathcal{H} = \mu \text{ Id} - M \text{ with } M_{i,j} = -i_{j}V$$

$$\langle \mathcal{N}_{m} \rangle = \frac{1}{\mu^{N}} \left\langle |\det \left(\mu \operatorname{Id} - M \right) | \left(\mu \operatorname{Id} - M \right) \right\rangle_{M}$$

Link with standard Gaussian ensembles of matrices

$$\langle \mathcal{N}_{\mathsf{m}} \rangle = \frac{1}{\mu^{\mathsf{N}}} \langle |\det(\mu - M)| \quad (\mu - M) \rangle_{\mathsf{M}} \text{ with } \mathcal{P}(M) \propto e^{-\frac{\mathsf{N}}{4\mu_{\mathsf{C}}^2} \left\lfloor \operatorname{tr} \mathsf{M}^2 - \frac{(\operatorname{tr} M)^2}{\mathsf{N}+2} \right\rfloor}$$

2 7

г

Link with standard Gaussian ensembles of matrices

$$\langle \mathcal{N}_{\rm m} \rangle = \frac{1}{\mu^{\rm N}} \left\langle |\det\left(\mu - M\right)| \left(\mu - M\right) \right\rangle_{\rm M} \text{ with } \mathcal{P}(M) \propto e^{-\frac{N}{4\mu_{\rm C}^2} \left\lfloor \operatorname{tr} M^2 - \frac{(\operatorname{tr} M)^2}{N+2} \right\rfloor}$$

г

2 7

Introduce additional Gaussian integration :

$$\langle \mathcal{N}_{\mathsf{m}} \rangle = \frac{1}{\mu^{\mathsf{N}}} \int_{-\infty}^{+\infty} dt \quad \overline{\frac{N}{2}} e^{-\mathsf{N}\frac{t^{2}}{2}} \mathcal{K}_{\mathsf{N}}(z_{\mathsf{t}}) \quad \text{with} \quad z_{\mathsf{t}} = \mu + \mu_{\mathsf{c}} t$$
$$\mathcal{K}_{\mathsf{N}}(z) = \langle |\det(z - M_{0})| \quad (z - M_{0}) \rangle_{\mathsf{M}_{0}}$$

Gaussian Orthogonal Ensemble (GOE) :

$$P(M_0) = C_N \exp$$

$$K_{\rm N}(z) = \langle |\det(z - M_0)| (z - M_0) \rangle_{\rm M_0}$$
 with $P(M_0) = C_{\rm N} e^{-\frac{N}{4\mu_c^2} \operatorname{tr} M_0^2}$

$$K_{N}(z) = \langle |\det(z - M_{0})| (z - M_{0}) \rangle_{M_{0}}$$
 with $P(M_{0}) = C_{N} e^{-\frac{N}{4\mu_{c}^{2}} tr M_{0}^{2}}$

• O(N) invariance of **GOE** measure

 \Rightarrow introduce the eigenvalues i of M_0

$$\mathcal{K}_{N}(z) = \frac{1}{z_{N}} \int_{-\infty}^{z} d_{1} \dots \int_{-\infty}^{z} d_{N} \prod_{i < j} |_{i} - j| \prod_{i=1}^{N} |z - i| e^{-\frac{N}{4\mu_{c}^{2}}\lambda_{i}^{2}}$$

 $\prod_{i < j} |_i - j|$: Vandermonde determinant (Jacobian).

$$K_{N}(z) = \langle \det(z - M_{0}) | (z - M_{0}) \rangle_{M_{0}}$$
 with $P(M_{0}) = C_{N} e^{-\frac{N}{4\mu_{0}^{2}} tr M_{0}^{2}}$

• O(N) invariance of **GOE** measure

 \Rightarrow introduce the eigenvalues i of M_0

$$\mathcal{K}_{N}(z) = \frac{1}{z_{N}} \int_{-\infty}^{z} d_{1} \dots \int_{-\infty}^{z} d_{N} \prod_{i < j} |_{i} - j \prod_{i=1}^{N} |z_{i} - i| e^{-\frac{N}{4\mu_{c}^{2}}\lambda_{i}^{2}}$$

 $\prod_{i < j} |_i - j|$: Vandermonde determinant (Jacobian).

$$K_{\rm N}(z) = \langle |\det(z - M_0)| (z - M_0) \rangle_{\rm M_0}$$
 with $P(M_0) = C_{\rm N} e^{-\frac{N}{4\mu_c^2} \operatorname{tr} M_0^2}$

$$K_{N}(z) = \langle |\det(z - M_{0})| (z - M_{0}) \rangle_{M_{0}}$$
 with $P(M_{0}) = C_{N} e^{-\frac{N}{4\mu_{c}^{2}} tr M_{0}^{2}}$

• O(N) invariance of GOE measure

 \Rightarrow introduce the eigenvalues i of M_0

$K_{\rm N}(z) = \frac{1}{z_{\rm N}} \int_{-\infty}^{z}$	$d_{1}\dots \frac{z}{-\infty}d_{-\infty}$	$\prod_{\mathbf{i} < \mathbf{j}} \mathbf{i} - \mathbf{j} \prod_{\mathbf{i} = 1}^{\mathbf{N}} z - \mathbf{i} e^{-\frac{\mathbf{N}}{4\mu_c^2}\lambda_{\mathbf{i}}^2}$
---	---	---

 $\prod_{i < j} |_i - j|$: Vandermonde determinant (Jacobian).

$$K_{\rm N}(z) = \langle |\det(z - M_0)| (z - M_0) \rangle_{\rm M_0}$$
 with $P(M_0) = C_{\rm N} e^{-\frac{N}{4\mu_c^2} \operatorname{tr} M_0^2}$

• We want to compute :

$$\tilde{v}_{N}(y) = \int_{-\infty}^{y} d_{1} \dots \int_{-\infty}^{y} d_{N} \prod_{i < j} |_{i} - j| \prod_{i=1}^{N} (y - i) e^{-\frac{\lambda_{i}^{2}}{2}}$$

• We want to compute :

$$\tilde{v}_{N}(y) = \int_{-\infty}^{y} d_{1} \dots \int_{-\infty}^{y} d_{N} \prod_{i < j} |_{i} - j| \prod_{i=1}^{N} (y - i) e^{-\frac{\lambda_{i}^{2}}{2}}$$

• For standard GOE, ie $P(M_{\text{GOE}}) \propto e^{-\frac{1}{2} \operatorname{tr} M_{\text{GOE}}^2}$:

$$P(1, ..., N) = D_N \prod_{i < j} |i - j| \prod_i e^{-\frac{\lambda_i^2}{2}}$$
Number of Minima and GOE eigenvalues

$$\mathcal{H} = \frac{\mu}{2} \sum_{k=1}^{N} x_k^2 + V$$

Finally ,we get :

$$\langle \mathcal{N}_{\mathsf{m}} \rangle = \frac{\mathbf{\mu}_{\mathsf{c}}}{\mathbf{\mu}} \qquad B_{\mathsf{N}} \quad I_{\mathsf{N}}(\mathbf{\mu}/\mathbf{\mu}_{\mathsf{c}})$$

with $I_{\mathsf{N}}(\mathbf{\mu}/\mathbf{\mu}_{\mathsf{c}}) = \frac{+\infty}{-\infty} dy \ e^{\frac{y^2}{2} - \frac{\mathsf{N}}{2}\left(y\sqrt{\frac{2}{\mathsf{N}}} - \frac{\mu}{\mu_{\mathsf{c}}}\right)^2} \frac{d}{dy} \left[\mathbb{P}_{\mathsf{N}+1}(\max \leq y)\right]$

Number of Minima and GOE eigenvalues

$$\mathcal{H} = \frac{\mu}{2} \sum_{k=1}^{N} x_k^2 + V$$

Finally ,we get :

Number of Minima and GOE eigenvalues

$$\mathcal{H} = \frac{\mu}{2} \sum_{k=1}^{N} x_k^2 + V$$

$$\mu_c = \overline{f''(0)}$$
Finally ,we get :
$$\langle \mathcal{N}_m \rangle = \frac{\mu_c}{\mu} \qquad N \qquad B_N \quad I_N(\mu/\mu_c)$$
number of minima
$$\psi : \text{ curvature (harmonic part)}$$
with $I_N(\mu/\mu_c) = \frac{+\infty}{-\infty} dy \ e^{\frac{y^2}{2} - \frac{N}{2} \left(y \sqrt{\frac{2}{N}} - \frac{\mu}{\mu_c}\right)^2} \frac{d}{dy} \left[\mathbb{P}_{N+1}(\max \le y)\right]$

Outline

Maximal eigenvalue of GOE : large deviations as $N \to \infty$

Maximal eigenvalue of GOE : large deviations as $N ightarrow \infty$

Correspondance between λ_{max} and our glass transition

$$\langle \mathcal{N}_{\mathsf{m}} \rangle = \frac{\mu_{\mathsf{c}}}{\mu} \overset{\mathsf{N}}{\mathsf{B}}_{\mathsf{N}} \qquad dy \ e^{\frac{y^2}{2} - \frac{\mathsf{N}}{2} \left(y \sqrt{\frac{2}{\mathsf{N}}} - \frac{\mu}{\mu_{\mathsf{c}}} \right)^2} \frac{d}{dy} \left[\mathbb{P}_{\mathsf{N}+1} (\max \leq y) \right]$$
Use large deviations of max + saddle point method as $N \to \infty$

d

Correspondance between λ_{max} and our glass transition

 $\mathsf{P}_N($)

 $\sqrt{2N}$

Glassy phase (logarithmic equivalent for $N \to \infty$) $\langle \mathcal{N}_{m} \rangle = \frac{\mu_{c}}{\mu} B_{N} \quad dy \; e^{\frac{y^{2}}{2} - \frac{N}{2} \left(y \sqrt{\frac{2}{N}} - \frac{\mu}{\mu_{c}} \right)^{2}} \frac{d}{dy} \left[\mathbb{P}_{N+1}(\max \leq y) \right]$

Use large deviations of max + saddle point method

$$\frac{\mathrm{d}}{\mathrm{d}y} \left[\mathbb{P}_{\mathsf{N}} \left(\begin{array}{cc} \max \leq y \right) \right] \approx \quad \begin{array}{c} e^{-\mathsf{N}^2 \psi_-(\mathsf{s})} & \text{for } \mathsf{s} < \sqrt{2} \\ e^{-\mathsf{N} \psi_+(\mathsf{s})} & \text{for } \mathsf{s} > \sqrt{2} \end{array}$$

 \Rightarrow recover the result of [Fyodorov, Williams (2007)] :

 $\mu < \mu_{c}$ $() = -\ln() - \frac{m^{2}}{2} + 2 - \frac{3}{2}$

 $\mu > \mu_c$

$$\langle \mathcal{N}_{m} \rangle \approx \textit{O(1)}$$

glassy phase : random part (V) dominates

harmonic part dominates

critical point $\mu_c = \overline{f''(0)}$

A step further (1) : more detailed large deviation results

Large deviations of $\frac{d}{dy} [\mathbb{P}_N(\max \le y)]$ for GOE : $y = s\sqrt{N}$, large

A step further (1) : more detailed large deviation results

Large deviations of $\frac{d}{dy} [\mathbb{P}_N (\max \le y)]$ for GOE : $y = s\sqrt{N}$, large N • Left tail : $y < \sqrt{2N}$, ie $s < \sqrt{2}$

$$\frac{d}{dy} \left[\mathbb{P}_{\mathsf{N}} \left(\max \leq y \right) \right] \sim e^{-\mathsf{N}^2 \psi_-(\mathsf{s}) + \mathsf{N}_{-1}(\mathsf{s}) - \phi_1 \ln \mathsf{N}_{-2}(\mathsf{s})}$$

cf [Borot, Eynard, Majumdar, Nadal (2011)] : left large deviations of max for G E (here = 1) using loop equations.

• **Right tail** : $y > \sqrt{2N}$, ie $s > \sqrt{2}$

$$\frac{d}{dy} \left[\mathbb{P}_{\mathsf{N}} \left(\begin{array}{c} \max \leq y \right) \right] \sim \frac{e^{-\mathsf{N}\psi_+(\mathsf{s})}}{2\sqrt{-}\left(-2+s^2\right)^{1/4}} \frac{1}{s+\sqrt{-2+s^2}}$$

cf [Borot, Nadal (2012)] : right large deviations for G E (loop equations).

Celine Nadal (Oxford)

A step further (2) : exact equivalent for both phases

Using previous results and saddle point method, get large N equivalents :

• Phase where the harmonic potential dominates : $\mu > \mu_c$

$$\langle \mathcal{N}_m \rangle \sim 1$$

A step further (2) : exact equivalent for both phases

A step further (2) : exact equivalent for both phases

Using previous results and saddle point method, get large N equivalents :

0

Introduction : the model (random Gaussian surface)

Close to transition : Tracy-Widom (1)

Close to transition : Tracy-Widom (2)

Correspondance between GOE and our disordered system :

	max for GOE	Curvature (disordered system)
Critical point	$y_{\rm c} = \sqrt{2N}$	$\mu_{c} = \overline{f''(0)}$

Close to transition : Tracy-Widom (2)

Correspondance between GOE and our disordered system :

	max for GOE	Curvature (disordered system)
Critical point	$y_{\rm c} = \sqrt{2N}$	$\mu_{c} = \overline{f''(0)}$
Close to transition	$y - \sqrt{2N} = O(N^{-1/6})$	$\frac{\mu}{\mu_{\rm c}} = 1 + N^{-\frac{1}{3}} + \dots$

Close to transition : Tracy-Widom (2)

Correspondance between GOE and our disordered system :

	max for GOE	Curvature (disordered system)
Critical point	$y_{\rm c} = \sqrt{2N}$	$\mu_{\rm c} = \overline{f''(0)}$
Close to transition	$y - \sqrt{2N} = O(N^{-1/6})$	$\frac{\mu}{\mu_{\rm c}} = 1 + N^{-\frac{1}{3}} + \dots$

Transition regime :

$$\langle \mathcal{N}_m
angle \sim \mathcal{N}$$
 () for $\frac{\mu}{\mu_c} = 1 + N^{-1/3} + ...$

Phases in disordered system $\mathcal{H}(\mathbf{x}) = \frac{\mu}{2}$

Phases in disordered system $\mathcal{H}(x) = \frac{\mu}{2} \sum_{k=1}^{N} x_k^2 + V$

Phases in disordered system $\mathcal{H}(\mathbf{x}) =$

Matching between di erent regimes

Intermediate regime : $\langle \mathcal{N} \rangle$
Intermediate regime : $\langle N_m \rangle \sim N()$ for $\frac{\mu}{\mu_c} = 1 + N^{-1/3} + ...$ • Matching with the right tail : $\rightarrow \infty$ Right asymptotics of Tracy-Widom : $1 - \mathcal{F}_1(x) \sim \frac{e^{-\frac{2}{3}x^{\frac{3}{2}}}}{4\sqrt{-x^3}}$

Intermediate regime :
$$\langle \mathcal{N}_{\rm m}
angle \sim \mathcal{N}$$
() for $rac{\mu}{\mu_{\rm c}}$ = 1 + $N^{-1/3}$

Intermediate regime : $\langle \mathcal{N}_{m} \rangle \sim \mathcal{N}()$ for $\frac{\mu}{\mu_{o}} = 1 + N^{-1/3} + ...$ • Matching with the right tail : $\rightarrow \infty$ Right asymptotics of Tracy-Widom : $1 - \mathcal{F}_1(x) \sim \frac{e^{-\frac{2}{3}x^{\frac{1}{2}}}}{4 \cdot \sqrt{-x^{\frac{3}{4}}}}$ as $x \to \infty$ Find $x^* \sim 2$ and recover phase $\mu > \mu_c : |\langle \mathcal{N}_m \rangle \sim 1|$. • Matching with the left tail : $\rightarrow -\infty$ Left asymptotics of TW : $\mathcal{F}_{1}(x) \sim \frac{e^{-\frac{1}{24}|x|^{3} - \frac{1}{3\sqrt{2}}|x|^{\frac{3}{2}}}{|x|^{\frac{1}{16}}}$ as $x \to -\infty$ Find $x^* \sim -2\sqrt{-2}$ and $|\langle \mathcal{N}_{m}
angle \sim 2\ 2^{\frac{21}{32}}\ \sqrt{-}|\ |^{\frac{23}{32}}\ _{1}\ e^{rac{|\delta|^{3}}{3} + rac{4\sqrt{2}}{3}|\delta|^{rac{3}{2}} - rac{2^{7/4}}{3}|\delta|^{rac{3}{4}} + rac{1}{4}|\delta|^{rac{3}{4}} + r$

Intermediate regime : $\sqrt[]{N_m} \sim N()$ for $\frac{\mu}{\mu_c} = 1 + N^{-1/3} + ...$

• Matching with the right tail : $\rightarrow \infty$

Right asymptotics of Tracy-Widom : $1 - \mathcal{F}_1(x) \sim 1$

Conclusion

Study of the

Thank you!

Reference :

Yan V. Fyodorov and Céline Nadal,

"Critical Behavior of the Number of Minima of a Random Landscape