


May-Wigner Instabilty Scenario :

"Will a Large Complex System be Stable?"

This question was posed by Robert May (NATURE 238, 413 (1972)) who introduced
a toy linear model for (in)stability of a large system of many interacting species:

X= X+ BXx; >0; x 2 RN

Without interactions the part X = X describes a simple exponential relaxation
of N uncoupled degrees of freedom X; with the same rate > 0 towards the stable
equilibrium X = 0. A complicated interaction between dynamics of different degrees
of freedom is mimicked by a general real asymmetric N N random matrix B with
mean zero and prescribed variance -2 of all entries. As a typical eigenvalue of B
with the largest r?gl_part grows as N the equilibrium X = 0 becomes unstable
aslongas < N.

This scenario is known in the literature as the "May-Wigner instability" and despite
its oversimplifying and schematic nature attracted very considerable attention in
mathematical ecology and complex systems theory over the years.






Counting equilibria via Kac-Rice formulae:

A standard analysis of autonomous ODE'’s starts with finding equilibrium points
and classifying them by stability properties.

We would like to know the total number N¢t(D) of all possible equilibria of our
system of nonlinear ODEs, i.e. the number of simultaneous solutions of N equations



Mean number of equilibria and the Elliptic Ensemble:

Using Kac-Rice approach we are able to count the mean total number EfNy¢g of all
possible equilibria in the system of nonlinear ODESs under consideration. This turns
out to be given by (YVF & Khoruzhenko, in progress):
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where m = = . with some characteristic scale ., and the random real

asymmetric matrix X being taken from the Gaussian Elliptic Ensemble:
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The parameter depends on the ratio of variances of gradient and solenoidal

components of the field such that the real Ginibre ensemble with = 0 corresponds
to purely solenoidal, and GOE with =1 to purely gradient flow.

Let us denote N)( ) the mean density of real eigenvalues of N N matrices X for
the elliptic ensemble at . Then it turns out that (cf. Edelman, Kostlan, Schub '94.)
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A Nonlinear Analogue of May-Wigner Instability as Topology Detrivialization:

The mean density g)( ) of real eigenvalues for the elliptic ensemble was computed
explicitly by Forrester & Nagao '08 in terms of Hermite polynomials, and its large-N
asymptotic behaviour was studied as well.

Asymptotic analysis of the counting problem for N 1 reveals then a topology
detrivialization transition, with the totﬁg number of equilibria abruptly changing from
a single equilibrium for > .= " N(F%0)+ %(0)) to exponentially many
equilibriaaslongas < :

EfNiotg L) N o) (m) = m22 * Inm>0 form=—<1



Landscape topology (de)trivialization for gradient dynamics:

In the case of purely gradient dynamics X = X rV(X) = rL(X)where:

P
L(X) = 5 NIXE AV (Xg XN 1) >0 1L<xi<d

Is the Lyapunov function (or "energy functional"). Correspondingly the equilibria
points are simply stationary points of the Lyapunov function whereas the stable

equilibria are local minima.
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Taking as before V (X) to be stationary isotropic random Gaussian field with

covariance structure EfV(X)V(y)g = F (X



Landscape topology (de)trivialization for gradient dynamics:

The asymptotics Fn  1(t) is well known (Tracy & Widom '94; Borot et al '11).
Using it for a fixed m & 1 we find for the mean number of minima:

1 m>1

E fNming eN st m <1

Here the complexity of stable equilibria (minima) is given by

(m)= 3(m’



Part II: Topology of Random Algebraic Varieties :

Recently, the problem of computing the expectation of topological properties of
random algebraic varieties has attracted a lot of interest ( see e.g. the works by
Burgisser 07, Nazarov-Sodin 09, Gayet-Welshinger '11, Sarnak 11, Lerario-
Lundberg 12, Sarnak-Wigman ’13) and others. An important class of problems
addresses estimates for Betti numbers of "generic" (=random) real hypersurfaces
given by zero set of real random homogenious polynomials of degree d in n + 1
variables restricted to the unit sphere. E.g. for d = 60 and n = 2 a typical picture is:

Figure 1. Zero locus of a random polynomial of degree d = 60 on the sphere ( M. Nastasescu)



Upper bound on by by Random Matrix Theory:

It turns out that the methods and results just exposed allow one to provide a useful
upper bound to the expected number of connected components bo(f). Indeed,
every component of the zero locus of the polynomials restricted to the sphere
bounds a region where the function attains at least a maximum or a minimum, and
consequently E fbo(f)g E TNmin + Nmax0d, where Nmin=max are numbers of
minima/maxima on the sphere. The problem then amounts to counting minima of a
random function on a sphere.

Figure 2. Zero locus of a random polynomial of degree d = 60 on the sphere ( M. Nastasescu)



Counting Stationary points for Isotropic Gaussian Landscapes:

In recent years there was a steady progress in counting & classifying the mean
number of stationary points of smooth isotropic Gaussian random fields V (X) on
the sphere |X] = R such that

EfV(X)V(XxYg=FX x9

Using the multidimensional Kac-Rice integrals it was shown, in particular, that
E fNming can be again directly related to the the distribution Fy (t) of the maximal
eigenvalue of random GOE matrices H such that P(H) /Z exp %Ter . Namely

N=2 R 2
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Upper bound on by for Gaussian rotationally invariant polynomials:

Endowing polynomials with a rotationally-invariant Gaussian distribution we can find
E fNming for any n and d from our formalism. We will mostly be interested in the limits
d ¥ 1 forafixednorn ¥ 7 fora fixedd.

Let lejg denote the standard basis of spherical harmonics of degree | on sphere S", then a
random invariant Gaussian polynomial of degree d in n + 1 variables can be constructed as :

fo) =" T i i ) O
x) = d 122N pa(l) i 1JX] I X pa(l) Kostlan

where f are i.i.d. Gaussian coefficients, and nonnegative weights pq(d); pa(d 2);:::;
parametrize all invariant ensembles.

We assume that there exists such 0 < 1l thatasd ¥ 7 the polynomials assume the
scaling form: pg(d xX)d ¥ (X) 6(&)



Summary :




For the special case of purely gradient flows one can also find explicit expression
for the number of stable equilibria. The latter are exponential in N but their
fraction among all equilibria is negligible. The crossover expression in that case

IS given in terms of the



